制作汽油发动机_自制汽油发动机模型
1.模型火箭发动机怎么制造
2.航模汽油机发动机哪款好
3.为何油动遥控车的发动机这么贵?使用寿命还短,燃料还要特制的?
4.我做了一个斯特林发动机模型,做完以后装好,各个部件运动灵活,可是怎么烧都不转。都有哪些可能?
5.模型油车油针调整和发动机磨车
6.内燃机的巨大提升,通向50%热效率之路。
性能参数;
直径:120mm
长度: 210mm
净重:1kg
推力:2.5kg力
国外造价参考:约100美元
国内材料成本约需:300元人民币
涡轮主要部件: 压气机FD0040主要是为燃烧室提供大量的空气,用航空板粘制而成
涡轮FD0055用耐高温不锈钢板,剪出叶片,弯成形状。
燃烧室用不锈钢容器改制
个人心得:
做为自制涡喷的原型机,可能现在你打算自制涡喷时,不用选择制作fd3-64,因为它毕竟是98年的产品,现在的国外爱好者的通过改进设计,自制涡喷已经达到12公斤推力。推重比10左右。
,但不要认为它已过时,而一无用处,因为fd3-64的制作理论,让你在家哩打造涡喷成为了
现实,不用去担心没有航空发动机制造厂的专用设备,因为日常生活中你能找到相应的材料来加工。同时,作者打破迷信专业厂家的思想,自己开动脑筋,用中国人的话说,就是想尽一切土办法,在科学的理论指导下制成了能用于航模的喷气发动机。他的成功,同时也鼓励了更多的爱好者参与到自制涡喷的研究与发烧行列中来,大大提高了自制涡喷的推力,这是一种挑战与锻炼。同时我们也可以参考fd3-64的制作加工部件过程,敢于根据自己的条件,在科学理论指导下,改进加工方法。但是fd3-64毕竟是过时的设计,它的木头压气轮需要碳纤加强,加上效率不高,因此,后来的改进用了kkk系列或盖勒特商品压气轮部件,稍大点的汽车配件店可以买到。
FD3/46 涡轮喷气发动机制作方法-摘录
在此感谢“东方蜘蛛”的大力支持
原著:kurt shreckling
摘自《Gas turbine engine for model aircraft-航模涡轮喷气发动机>》
业余制作涡轮的工具:
一台普通的车床
能焊不锈钢的电焊
电钻
由于详细的设计与制作过程有一本80页的书那么多,以下仅为书中内容的摘要!!!
1.涡轮
涡轮的桨叶长度大约是外经的1/6,(对于业鱼爱好者来说不要问为什么),因为是作者无数次实验的数据。
涡轮不能钻孔,叶片数设计为17片。
当温度从500度降至20度时,涡轮与机壳的间隙会减少5%,也就是说设计时要预留涡轮膨胀空间,太大了不行。没推力了。涡轮为2.5mm耐高温不锈钢剪口弯成。
2.轴
高转速低转矩,必须很硬,不然会在60000转、分的情况下共振玩完,本发动机用铝合金以助散热,两端为不锈钢。轴承要高转速 的,达90000转、分才行。使用润滑油降温,可以用日常找到的688代替。
3.压气叶轮
材料为航空层板,或山毛榉等结实的木头。外绕碳纤加强.
4.涡轮动平衡
(请参见涡喷自制问答)
5.加工资料
fd3-64设计与部件加工蓝图 下载...>解压密码:联盟成员免费获得!
kj66的手工版
(适合中国爱好者参考的制作)
直径: 110mm
长: 235mm
最大推力:5kg
最大转速: 103,000rpm
排气温度: 550 deg C
净重 1.140Kg
本设计是kj66手工制作版,国外爱好者自力更生,除压气轮用了车用的配件压气轮之外,其余全用手工制作,以上是kj66的手工制作成品。
个人心得:(供爱好者参考)
对于国内爱好者要自制涡喷,根据本人的制作经验,我个人认为,可以在对fd3-64的加工设计原理有一定了解后,制作KJ66(手工版)是一个比较合适的选择,因为如下的改造足以让你觉得动心。
1.压气轮
新的设计使用了涡轮增压器用的kkk系列铝合金压气轮。各大汽车配件店能购到
由于原fd3-64木制压气轮制作比较麻烦,加上一定要碳纤加强,才能确保安全,
但碳纤在国内可能很难买到。因此会阻碍制作进程。也可能打消你制作的欲望。
为了提高压气机的效率,简化制作步骤,因而在kj66上用是汽车常用已做好动平衡成品kkk系列铝合金压气轮。(本工作室可提供所需的压气轮配件)
2.燃烧室
原设计是圆锥状,效率不高。环型燃烧室为重新设计为圆柱状,,不再用笨重的盘状结构燃料管,而是用6根1mm直径的注射器针来做,增加了六根燃料蒸发短管,改进后,提高了燃烧效率,有能力让涡轮转速达,103000 rpm,推力能达到5kg力。(kj66加工手册上提供了该种燃烧室的蓝图)
3.导气环(简称NGV)
原ngv,要焊在外壳上,加工过程较麻烦一些,现 导气环重新设计,,以配合圆柱状燃烧室,可以按图用不锈钢板来焊接加工。其实ngv国外多种加工方法,看个人情况可以改进加工工艺。
4,涡轮
涡轮可以同fd3-64制作方法一样。直径为66mm,用3.5mm不锈钢板来做,以增加强度。
5.轴承
选用高速陶瓷角接触轴承 ,使转速可达到最高要求。全陶瓷,国内价格较贵。参考国外的爱好者也是选用普通的较高级别的进口轴承,只是在使用中不要让涡喷长时间工作在最大推力下,同时确保轴承的冷却。
fd3-64为手工自制涡喷探索出一条路,在此基础上就是以专业材料与先进的加工手段加工出来的就是著名的商品涡轮机kj66,
参考意见:
根据个人情况,kj66手工版的制作,我选择完全按kj66的蓝图来加工,最难解决的那个涡轮部件,完全用fd3-64的加工方法来制作涡轮与动平衡调试,。最适合目前国内难以买到进口材料的爱好者制作。
商品级:KJ66
性能参数
直径:110mm
长度: 240mm
净重:0.93kg
推力:8kg力
价格:约1500美元
KJ66发动机可能是目前最流行的设计,用icon713精铸的涡轮,使之可以达到8公斤推力,这是Artesjets推出的产品,该公司为广大爱好者提供该机型各种配件,使自制爱好者也能在此基础上制造出高推力的涡喷发动机,也可能是目前世界上爱好者自制的最多的机型之一。
下图显示的是自制的kj66内部部件
::喷气发动机和模型::
1. 涡喷发动机的推力和螺旋桨推力的本质区别
FD3/64发动机满载时功率大概为80千瓦。随着发动机速度的提高,能量的转换率,也就是发动机的效率也不断提高。
定一活塞发动机工作容积为10cc,功率在转速为12000转/分时为1000瓦。螺旋桨直径为28cm,螺距18cm,发动机的最大效率为75%,此时转速为70%的最大转速。其静态推力F=33牛顿 大于FD3/64的24牛顿 设分别装有两种发动机的两架飞机的速度由于其他原因都达到40米/秒。活塞发动机产生的拉力将下降为大约20牛顿,。此时的喷气发动机终于显示出它的优越性。在40米/秒的高速下,它的推力只是稍稍地下降了2个牛顿,飞机的速度也将大大地超过装有活塞发动机的飞机。这也是为什么喷气机的速度能轻而易举地达到3百多公里每小时。
2. 发动机的安装和隔热
发动机工作要吸入空气,必须要有一个至少60mm直径的圆形的,一端直径逐渐增加到70mm的空气入口。喷气发动机的空气吞吐量远小于相当的函道发动机。
推力管道的进气口直径为80mm,喷口为75mm,长度为43cm,使用0.1mm厚的不锈钢制作。管道的进气口和发动机喷口必须要有大约10mm的间隙,仔细调整发动机喷口和管道之间的距离能够增加大约2牛顿的推力,实验表明管道超过喷口3mm是最明智的选择。管道的工作温度将达到350度,使用带有胶水的铝泊来隔热将很有用。
3. 燃料消耗与油箱
fd3-64使用的是汽油与柴油的混合物,最好是用航空煤油。油需要用一个小型 的油泵来加压。如果用在航模上,那么需要用7.2v上下的直流小油泵。
发动机的功率大概为80千瓦,如果燃料使用柴油,最小燃料消耗量大概为1。81g/s。也就是2.13毫升/s。不同于其他发动机,喷气发动机的油箱不能进入空气,不然的话为导致油路中断,医院用打吊针的塑料输液袋是很理想的油箱
相关资料与链接:(专业成员可看隐含链接)
1.绝对让共军弟兄流口水的台湾喷气飞行网站
2.用300元打造完全涡喷实验机(只供试验用)
3.涡轮发动机原理,结构 ,设计心得与指南
4. 下一页:涡喷自制问题解答FAQ
5.涡喷发动的附件与启动
6.高象真度喷气机战斗机体与加工
7.涡轮喷气发动机部件业余加工过程
8.自制低成本数控翼型切割机
(制作涡喷特别提醒!!)
::安全守则::
涡喷的制作不同于其他模型 ,由于涡喷在高温与高速条件下工作
如果你不想被当成烤鸭请注意下面的事项!!
1.别被火喷成烤鸭,玩火要有科学知识指导。
2.,涡轮一定要作动平衡才能用。
3.无论如何不要在共公场合试发动机,很多人围观不是好事。
4.涡轮转速高达70000转每分以上,没机械基础不要去试!!
5,发动机试运与工作中,永远不要站在涡轮的两侧正对位,以免涡轮发生事故时,钢片高速飞出,象一样,危及生命!!
特别提醒!做涡喷一定要有机加工与材料常识,了解金属,火灾,爆炸原理,等安全知识,安全第一
模型火箭发动机怎么制造
第一,甲醇机飞行动作暴力,汽油机飞行动作不能过于暴力
第二,甲醇机后期燃油成本高,汽油机后期燃油成本低
第三,甲醇机发动机寿命短,汽油机发动机寿命长
也就是说,你要是想省钱,就玩汽油的,但是肯定没有甲醇的过瘾、刺激!
航模汽油机发动机哪款好
一、战斗机涡扇喷气发动机的工作原理现代涡轮喷气发动机的结构由进气道、压气机、燃烧室、涡轮和尾喷管组成,战斗机的涡轮和尾喷管间还有加力燃烧室。涡轮喷气发动机仍属于热机的一种,就必须遵循热机的做功原则:在高压下输入能量,低压下释放能量。因此,从产生输出能量的原理上讲,喷气式发动机和活塞式发动机是相同的,都需要有进气、加压、燃烧和排气这四个阶段,不同的是,在活塞式发动机中这4个阶段是分时依次进行的,但在喷气发动机中则是连续进行的,气体依次流经喷气发动机的各个部分,就对应着活塞式发动机的四个工作位置。 空气首先进入的是发动机的进气道,当飞机飞行时,可以看作气流以飞行速度流向发动机,由于飞机飞行的速度是变化的,而压气机适应的来流速度是有一定的范围的,因而进气道的功能就是通过可调管道,将来流调整为合适的速度。在超音速飞行时,在进气道前和进气道内气流速度减至亚音速,此时气流的滞止可使压力升高十几倍甚至几十倍,大大超过压气机中的压力提高倍数,因而产生了单靠速度冲压,不需压气机的冲压喷气发动机。 进气道后的压气机是专门用来提高气流的压力的,空气流过压气机时,压气机工作叶片对气流做功,使气流的压力,温度升高。在亚音速时,压气机是气流增压的主要部件。 从燃烧室流出的高温高压燃气,流过同压气机装在同一条轴上的涡轮。燃气的部分内能在涡轮中膨胀转化为机械能,带动压气机旋转,在涡轮喷气发动机中,气流在涡轮中膨胀所做的功正好等于压气机压缩空气所消耗的功以及传动附件克服摩擦所需的功。经过燃烧后,涡轮前的燃气能量大大增加,因而在涡轮中的膨胀比远小于压气机中的压缩比,涡轮出口处的压力和温度都比压气机进口高很多,发动机的推力就是这一部分燃气的能量而来的。 从涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速沿发动机轴向从喷口向后排出。这一速度比气流进入发动机的速度大得多,使发动机获得了反作用的推力。 一般来讲,当气流从燃烧室出来时的温度越高,输入的能量就越大,发动机的推力也就越大。但是,由于涡轮材料等的限制,目前只能达到1650K左右,现代战斗机有时需要短时间增加推力,就在涡轮后再加上一个加力燃烧室喷入燃油,让未充分燃烧的燃气与喷入的燃油混合再次燃烧,由于加力燃烧室内无旋转部件,温度可达2000K,可使发动机的推力增加至1.5倍左右。其缺点就是油耗急剧加大,同时过高的温度也影响发动机的寿命,因此发动机开加力一般是有时限的,低空不过十几秒,多用于起飞或战斗时,在高空则可开较长的时间。 随着航空燃气涡轮技术的进步,人们在涡轮喷气发动机的基础上,又发展了多种喷气发动机,如根据增压技术的不同,有冲压发动机和脉动发动机;根据能量输出的不同,有涡轮风扇发动机、涡轮螺旋桨发动机、涡轮轴发动机和螺桨风扇发动机等。 喷气发动机尽管在低速时油耗要大于活塞式发动机,但其优异的高速性能使其迅速取代了后者,成为航空发动机的主流 二、航天火箭发动机迄今为止,人类从事的最神奇的事业就是太空探索了。它的神奇之处很大程度上是因为它的复杂性。太空探索是非常复杂的,因为其中有太多的问题需要解决,有太多的障碍需要克服。所面临的问题包括: 太空的真空环境 热量处理问题 重返大气层的难题 轨道力学 微小陨石和太空碎片 宇宙辐射和太阳辐射 在无重力环境下为卫生设施提供后勤保障 但在所有这些问题中,最重要的还是如何产生足够的能量使太空船飞离地面。于是火箭发动机应运而生。 一方面,火箭发动机是如此简单,您完全可以自行制造和发射火箭模型,所需的成本极低(有关详细信息,请参见本文最后一页上的链接)。而另一方面,火箭发动机(及其燃料系统)又是如此复杂,目前只有三个国家曾将自己的宇航员送入轨道。在本文中,我们将对火箭发动机进行探讨,以了解它们的工作原理以及一些与之相关的复杂问题。 火箭发动机基本原理火箭发动机工作原理当大多数人想到马达或发动机时,会认为它们与旋转有关。例如,汽车里的往复式汽油发动机会产生转动能量以驱动车轮。电动马达产生的转动能量则用来驱动风扇或转动磁盘。蒸汽发动机也用来完成同样的工作,蒸汽轮机和大多数燃气轮机也是如此。 火箭发动机则与之有着根本的区别。它是一种反作用力式发动机。火箭发动机是以一条著名的牛顿定律作为基本驱动原理的,该定律认为“每个作用力都有一个大小相等、方向相反的反作用力”。火箭发动机向一个方向抛射物质,结果会获得另一个方向的反作用力。
为何油动遥控车的发动机这么贵?使用寿命还短,燃料还要特制的?
航模发动机分电动机,甲醇内燃机,汽油内燃机,涡喷发动机。如果算上火箭模型的话,还要加上固体火药发动机。
电动机:电动机一般选用无刷电机,无刷电机相比有刷电机寿命更长性能更稳定。
无刷电机型号的选择:
无刷电机型号标称没有一个同一标准,目前比较通用的一种是内径标识法。即表识电机外转子内径,从一定程度上能够表明电机的线圈直径和匝数。新西达电机是国产比较便宜,性价比比较高的电机品牌,新手用足够了。比如“新西达2212 1400KV”即是一种电机的型号 1400KV在下面说明。
电机的KV值:电机输入电压每提高1v,电机空载转速提高的量,我们称为KV值。1400KV即说明电机空载情况下,加1V电压,转速为每分钟1400转,2V电压每分钟2800转,依此类推。
同型号电机(比如都是2212)KV值越大的电机,价钱越贵,拉力相对KV值小的电机越大(有限的提高,影响拉力最主要的因素还是电机的线圈直径、匝数,直观一点说就是内径。)
甲醇内燃机:比较传统的航模发动机。
从结构上分2冲程和4冲程两种。
结构上的不同就不多说了,查查初中物理课本就能知道。
但说性能上的不同:
在同等排量下,2冲程所能提供拉力更大,声音更嘈杂(不好听)
在同等拉力输出情况下,4冲程更省油,声音更好听些
还有一点非常大的不同:油门曲线不同。这是有能力买4冲发动机的人都买4冲的最大理由。
你那张纸拿个笔,画一个X轴和一个Y轴(只取第一象限,既只要X\Y轴上的数字都是正数),X轴表示你推油门杆的量,Y轴表示发动机的动力输出量。你觉得什么发动机最好控制?当然是油门杆量是1,动力输出也是1,油门杆是2,动力输出也是2,也就是说油门曲线是一条与X/Y轴都成45度的直线是最好控制的。但是很不幸发动机的油门曲线是一条曲线,4冲程发动机的油门曲线相比2冲程发动机的油门曲线更直一点,更接近最好控制的那条直线。
再说从排量上分。航模甲醇发动机排量一般有15、20、40、55、75、90等。这个“15、20。。。90”是表示排量是“0.015、0.02。。。0.09立方英寸”。按照发动机等级不同,配不同大小的飞机。72的四冲程发动机基本上和50的2冲程发动机动力差不多。
再说说航模甲醇发动机品牌:
国内:
三叶——价钱便宜,但是不适合新手使用,因为甲醇内燃机的调整较麻烦,新手调整的水平不到很可能调不出来,使内燃机无法正常运转。且自重相对较大。
国外(日本):
大名鼎鼎的OS——OS牌发动机价钱较高(55级2冲程发动机价钱大概是三叶46级2冲程价钱的两倍),调整相对较容易,新手在有人教的情况下,下点功夫调整能够使发动机正常工作。自重相对国产三叶较轻,工作稳定。
顶级品牌YS——YS四冲程发动机基本上就是F3A赛事的顶级发动机了,功率大、重量轻,YS63四冲程发动机输出功率甚至大于OS72四冲程发动机,性能稳定。
长寿发动机NEYA——也是很好的发动机,号称一个发动机能用三代人,因为活塞是陶瓷的,造价较高,性能稳定,寿命超强。
汽油内燃机:新兴起的汽油动力航模发动机,想玩大飞机、有钱的人的首选。原理、结构和甲醇机一样,但是汽油发动机常见的基本上都是2冲程的。汽油发动机的排量标称比甲醇嫩燃机的排量标称直观很多,一般有26CC、50CC、100CC、150CC、200CC
再说品牌:日本小松发动机是一个分不错的品牌,重量轻、功率大,我还没有在网上看见哪位网友说小松发动机不好的。
国内品牌很多很杂,口碑好些的就是美乐迪了。再有就是DLE。
汽油发动机不太懂,我主要是玩甲醇动力的。
涡喷发动机:价钱超贵,我看见过一个发动机,3W多,工作寿命50小时,超过50小时需返厂维护。一般人是受不了的。我是一般人,所以对涡喷发动机没有关注过。
上面讲的有好些是直接复制我以前回复的其他问题,懒得打字了。理论上讲应该不算抄袭吧?= o =
我做了一个斯特林发动机模型,做完以后装好,各个部件运动灵活,可是怎么烧都不转。都有哪些可能?
可以改,见过有人改的四冲程汽油机。
如果你动手能力出奇的话,可以在原有底盘上打孔安装,后期需要调试齿轮,试好比较完美的齿轮比,否则就算你是再骚的发动机也会提前结束寿命。
这样的改好的车子也就适合玩玩,你还得考虑车架的受力分配问题,一侧重一侧轻过弯容易翻车,上过重的发动机你还得考虑车架的悬挂问题,避震的阻尼(浓度),都需要不断的调试,相比价格够你买2、3部进口模型发动机了吧。
这东西就是烧钱的,如果资金不支持,还是不要入手了。
而且,油动RC的发动机没有你想象中那么易损,一辆车子到你手里真正玩的时间比你修理升级车架的时间要少,一箱汽油平时玩的话一个多小时,如果你是上班族的话,相信我,汽油站打上20L汽油够你断断续续使用一个季度,除非你时间多天天玩车
模型油车油针调整和发动机磨车
原因:
1.温差太小;
2.摩擦太大;
3.没给初始动能;
4.冷 热室的体积不能差太多。
延伸阅读:
1.斯特林发动机是英国物理学家罗巴特 斯特林(Robert Stirling)于1816年发明的,所以命名为"斯特林发动机"(Stirling engine)。
2.斯特林发动机是通过气缸内工作介质(氢气或氦气)经过冷却、压缩、吸热、膨胀为一个周期的循环来输出动力,因此又被称为热气机。
3.斯特林发动机是一种外燃发动机,其有效效率一般介于汽油机与柴油机之间。
内燃机的巨大提升,通向50%热效率之路。
调整
在遥控车引擎上面,一般义大利的引擎是做到三油针的(如果再加上怠速油针就算四油针),除了主/副油针,还有一个设定喷油嘴位置的第三油针,在此先不说明以免混淆。
首先,要建立一个观念,在某个转速区域,油量多寡的影响!
供油量多:引擎温度低,提速黏滞(拉转速慢)
供油量少:引擎温度高,提速迅速(拉转速高)
而主/副油针,说穿了就是调整整个转速区域的供油量平衡。
主油针负责调整整个转速区域的主供油量。
副油针负责调整怠速以及低速的供油量。
当引擎在怠速以及低速(起步)时,引擎的反应是靠副油针来调整,所以引擎在起步时,如果觉得低速无力,可以将副油针锁下去一些,以较低(稀薄)的供油量来换取引擎的反应,如果供油量不足,引擎将出现吃不到油的情形(会酷酷嗽),若低速供油量太多则提速慢,排气管会排出大量烟,且停车过久排气管会出现积油情形,甚至导致熄火!
副油针还有另一个重要的工作使命,在于赛道上入弯"回油"时,给予引擎降温喘气之用,充足的低速供油量,可以让引擎每次回油时,温度降低好几度,但是过多的低速供油量在出弯时的引擎反应上,又有可能差对手一截,所以取舍就在于车手的设定!而当节气门拉出超过1/3时,那副油针的影响几乎就没有了,取而代之的是主油针(主油量)的设定。
主油针涵盖全域转速的供油量(注),引擎的工作温度以及最高转速设定,就是靠主油针来调整,主供油量越稀薄,则引擎转速越高(相对马力越大),以及工作温度越高。主供油量越多,引擎转速低,工作温度低,至于主油针的设定,在遥控车引擎上,大多是以测量引擎缸头温度来设定,设引擎工作温度设定在100度,不足则锁主油针,超过则退主油针,如果跟人家拼了引擎不要了,我有可能设定将近140度的工作温度,呵呵...
所以请注意! ! ! “缸温”是很重要的!
测量温度的设备是必备的,一只遥控车用的红外线测温枪大约2~3千元,最大温度大约可测到300多度,已经足够使用,引擎会缩缸都是因为过热导致润滑油膜破裂,所以顾好工作温度等于顾好引擎!
像我是一闻排气的味道就知道是否过热,或是用铁砂掌稍微一碰散热头就知道温度如何,也是因为之前用红外线测温枪测量多次脑中已经有资料库,感觉和经验比对就知道引擎状况!至于合适的工作温度则需自己试验,一般引擎的最佳工作温度约100~120。
注:由于高低速油针在转速区域上是重叠的(如下图)
低速油针├───┤(xxx rpm)
高速油针├────────────────────────┤(Max rpm)
所以在细调时:如果有锁主油针,我会稍微退一些副油针。如果有退主油针,我会稍微锁一些副油针。以避免调整迷失,因为你锁主油针,同时会动到低速供油量。要玩好二行程引擎,耳朵也要够利,有时候光听引擎声音就知道问题在哪里!
主副油针在低转速区域是重叠的,说明一下原理:
主油针负责调整引擎的总供油量,但是引擎在低速时,根本无法消化这主油针所设定的供油量,于是这时需要副油针再来限制引擎在低速时,正确的油量。
设尾速不足锁主油针是第一步,但是原本设定的副油针设定就跑掉了,因为油路是先经过主油针设定主供油量,再经过副油针设定引擎低速的供油量,你锁上面的水龙头,那下面的水龙头水就变少了,当然要把下面的水龙头也稍微打开一点,这样低速油量才会跟原来设定一样!
为何调整要这么麻烦?一进一退? ? ?因为不这样调往往会设定迷失!主副油针就像是天秤两端...你原本想要强化低速,结果高速吃不到油你本来想强化低速,结果引擎过热?退了高速又变成引擎没力 ...种种泛称设定迷失!
再说调整油针的注意事项(细调):
调整油针一次的量是越小越好,而且每次调整的量要固定,避免调整迷失!
设油针从开启到关闭是由1~10
├─┼─┼─┼─┼─┼─┼─┼─┼─┤
1 10
可是你每次教调时一次都转超过三格,设今天调到第四格是正确值,而你在第五格,结果你一锁跑到二,一加又跑到六,一锁又跑到三...结果你每次调完跑一跑又乱了,所以记得一次的调整量固定,而且越少越好!反覆调多次,就可以找到正确的点!刚调完,引擎不会马上回馈出新的状态,一定要跑一圈,引擎才会呈现新的设定模样,所以,调整完一定要下去跑一跑,再做下一次细调!虽然很烦,但是久了你就知道点要如何抓了!感受一下引擎的回馈!
“
虽然我国是全球最为积极推进电动车普及的国家,但是考虑到电动车天生的补充能量劣势和里程焦虑,我国仍然非常现实的推出了低油耗车型奖励方案。具体已经在笔者的前面一篇文字里做了描述。详见《工信部出的奥数题,解出来你就知道燃油车5年后还有戏吗》。
这一方案对能够带来巨大油耗降低的混合动力车型是一个前所未见的利好,同时也鼓励各厂家进一步挖掘内燃机的潜力,做好燃油车油耗降低工作。
说起挖掘内燃机的潜力,首当其冲的就是本田和丰田,早在2015年丰田就在其SAE文献中发表了实现45%热效率发动机的技术。
在那个时候,丰田使用了一台2.0升的四缸实验样机,样机参数如下图所示
具体用的则是如下几种技术,分别是阿特金森循环,冷却式废气再循环(cooled?EGR),低摩擦技术,长冲程气缸,稀薄燃烧技术以及高滚流技术。具体来说,为了降低排气热损失,一个重要的方案就是使用长冲程气缸,为了照顾发动机转速,长冲程气缸最多使用到1.5倍的冲程缸径比。做好发动机基本结构之后,下一步就是做到超级稀薄加低温燃烧,而为了实现超级稀薄燃烧,则需要高滚流技术和高能量电火技术。考虑到实现高热效率常用的高压缩比(这里是13:1),为了降低因为高压缩比带来的爆震,冷却式废弃再循环技术也需要被应用上去。
在这些技术中,超级稀薄燃烧是对热效率提升最高的手段,根据丰田的研究,相比标准空燃比的14.7,当空燃比提升一倍达到29以上的时候,发动机热效率可以提升10%。如果把稀薄燃烧和冷却式废气再循环结合起来,以20的空燃比外加20%的cooled?EGR,丰田就将这一台样机的最高热效率提升到了45.6%。为了保证稀薄燃烧下的进气量,丰田还尝试了用一台电动涡轮增压器,而在把测试用的燃油从91RON,转为100RON之后,热效率甚至提升到了45.9%。丰田还尝试用了一台小的涡轮增压器,替换电动增压器,但是涡轮导致的排气压力上升反而降低了热效率到43.9%。
丰田还对这台样机做了更细致的研究,发现如果使用更快的点火方式以及更加稀薄的空燃比(超过20),这台样机可以最终超过46.5%的最大热效率。实现这一热效率的发动机转速为2000转,BMEP在0.88。
由于仅仅是一台验证用的样机,所以丰田并未给出该发动机完整的BC图。由于目前业界普遍认为可见的将来就是1.5的冲程缸径比。所以丰田的这些技术验证可以认为是各种传统的发动机优化技术达到极限之后的效果。
说完了丰田的样机,笔者曾经介绍过一台本田的样机,也就是在2015年10月,本田不甘落后的在其论文中发表了一个达到45%热效率的验证机。不过这台机器仅仅只有一个气缸,大小为626cc,冲程缸径比也是1.5,供油方式仍然是多点电喷,为了解决进气量的问题,本田为这台发动机加上了机械增压器。
具体发动机参数如下图所示。
而本田在这台验证机上使用的技术则在如下图红框中显示:
首先是高压缩比,这台验证机使用的机械压缩比高达17,然后是很高的废气回收率,这里高达35%,但是本田没用使用超稀薄的稀薄燃烧,本田的意思是稀薄燃烧会带来尾气处理的问题。然后还有MBT(minimum?advance?for?Best?Torque),再下来就是机械增加以及高达1.5的冲程缸径比了。
实际上本田的验证机比丰田做的更加原始,并不如丰田那样做了多方面的验证。
时间一晃来到2020年,当年45%热效率的验证机已经进化到了更加成熟的状态了。
首先还是本田,在2018年10月本田发布了其最新的验证机型,这次的验证机型,在2015年的45%热效率基础上,再次提高了两个点达到了47.5%。这一次本田终于用上了稀薄燃烧技术,具体名称叫DISC(direct?inject?stratified?charge?combustion)”直喷分层充气燃烧”,这一技术被认为可以有效降低稀薄燃烧带来的排放问题。而为了实现这种分层燃烧,本田用了F1赛车上的一项技术,那就是预燃烧室(pre-chamber)。如下图所示,标识为pre-chamber的部分就是预燃烧室。
除了预燃烧室这一最为显著的新技术之外,本田的这一套验证机还有如下特征
我们可以看到这一验证机仍然只是一个单缸机型,458cc容量,冲程缸径比为1.5,膨胀比17,而有效压缩比为12.5(也就是机械压缩比),进气方式为机械增压,供油方式为双喷,主气缸为多点电喷,预燃烧室为直喷,火花塞点火能量为60mJ(属于一般性点火能量)。而实现这一预燃烧技术最为关键的就是预燃烧室大小以及预燃烧室和主气缸直接开孔的大小和数量。
这里的Nozzle?diameter就是指预燃烧室到气缸之间的小孔直径,number?of?nozzles就是小孔数量。
经过一系列的模拟和计算,本田最后得出结论。小孔的直径为1.6毫米,数量为10个的时候能获得最好的热效率和排放水平。得益于预燃烧室的设计,本田可以在这一台验证机上实现高达38:1的空燃比。这一条在马自达的skyactiv-X上达到的是36.8:1。
最终在预燃烧室这一关键技术的加成下,本田在这台验证机上实现了47.2%的热效率。参见下图。
这个效率最高的点在大约800kPa处实现,对应一个458cc的气缸而言,就是29NM,转速为2000转,如果扩大到四缸,理论上就是在扭矩大约130NM处实现。
说完了日本人研究,德国人也没有闲着,以IAV(Ingenieurgesellschaft?Auto?und?Verkehr)也就是Engineer?Society?Automobile?and?Traffic为首的德国人也在2020年提出了雄心勃勃的。他们要开发处一款用于混动车型的超高热效率发动机,目标见如下图所示。
简单的说,就是要在2000转到3300转之间实现45%的热效率。这一目标甚至比丰田和本田的还要高。至于是否能达到,我们就来看看IAV的论文怎么说的把。
另外需要注明的是,IAV是大众集团占据主导地位的机构。如果大众说的2026年停止汽油机的开发为真的话,那么这一台发动机很可能就是大众最后的汽油机了。
那么我们说完了德国人在发动机开发上的设计目标,那么实现这些目标用的哪些技术呢?
根据论文的描述,第一要素是提高压缩比,然后是通过高比例的冷却式废气再循环控制爆震,再就是用米勒循环(其实就是晚关进气门),还有提升燃烧速度,这一点特别需要注意的是,为了提升燃烧速度,IAV也用的非常稀薄的混合气,而为了点燃这种非常稀薄的混合气,IAV使用了预燃烧室技术。除了以上方法之外,高的冲程缸径比也成为了发动机设计的一部分。为了减少尾气热交换损失,IAV还用了一个大号的废气涡轮。
如下图为IAV验证机的预燃烧室模型图。
做完了这些之后,IAV的这台1.6升的四缸验证样机达到了如下效果。
从这副图上看,发动机在3000转,且扭矩12bar(152NM)附近达到了最大热效率45%。而且还在很大一个范围内都实现了44%的热效率。由于这是一台给混动车使用的发动机,在图上的灰色部分都是电驱动区域。这样就能把WLTC工况下绝大部分工作的效率范围都控制在40%以上。如果这台机器真的能配合混动系统投入实用,那么将是一台非常省油的动力系统。
注意它的压缩比达到了17.4,冲程缸径比为1.25。
除了德国车企也还在孜孜不倦的开发发动机之外,delphi这样一家来自美国的汽车零部件厂家也没有放弃发动机的技术进步。
在2019年的SAE大会上,delphi的前发动机开发主管Mark?Sellnau就提出了发动机通向50%热效率的方法,并指出delphi在当前43%热效率发动机的基础上,下一代汽油机可以达到48%的热效率。
笔者找到了Delphi这台43%热效率发动机以及如何改进并达到48%热效率的SAE论文,也在这里给读者做一个介绍。
在2019年的时候,Delphi已经开发出了一台2.2升的压缩比为17的四缸发动机,称其为第三代发动机(G3X)其最大热效率为43%,而在随后的研究中,基于这台43%热效率的发动机,通过增加隔热涂层和其他一些办法,可以让这台发动机达到48%的热效率。这一验证是在美国国家能源部的Argonne国家实验室完成的,也是得到了美国能源部的赞助。
这台2.2升的发动机使用的技术叫GDCI(gasoline?direct-injection?compression-ignition?)”汽油直喷压燃点火”。它的一些参数如下:
图上可以看出冲程缸径比为1.28
在经过一系列的优化之后,这台发动机取得了非常好的热效率
如下图所示
出了在1750转以及1200kPa附近得到43%的热效率之外,在很大的一个范围内(1000转到2600转,500kPa到2000kPa)都能获得40%的热效率。这样一台发动机即使不使用混动系统,也能取得很好的油耗水平。
当然这还不是全部,在通过分析这台发动机的热各种能量损失之后,Delphi提出了如下几种改进方法,如果这些方法能实施到位,那么预计这台发动机的换代机型,也就是G4X,可以达到最大48%的热效率。
首先就是热量传导损失,然后是摩擦损失,最后则是可以提高涡轮增压器的效率。这其中最大的效果来自于热量传导损失,根据最新的研究表明,如果使用最新的隔热涂层,可以将热传导损失减少50%以上。在摩擦损失方面,通过提升曲轴,连杆轴承,凸轮传动,机油泵以及润滑油特性,可以减少大约10%的摩擦损失。而提升涡轮增压器的效率也能带来2%的效率提升。
经过总结,这些损失带来的效率提升点数的情况用柱状图表示了出来。
根据描述,用以上效率提升方案之后,这台2.2升的4缸发动机最终可以达到47.6%的热效率。
考虑到理论的极限,Delphi认为汽油内燃机的效率就是50%是目前可实现的极限,而理论极限则为60%。但是目前并无理论支持达到60%的实现方法。
在Delphi看来,达到50%之后,不可避免的摩擦损失,泵气损失,热传导损失和燃烧损失决定了乘用车上的汽油机难以再获得实质性的提升。
也许现实中的卡诺循环极限就在60%了。
END
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。