1.超全面的油料知识大全

2.生活中的科学小知识有哪些

3.柴油货车冬季加多少号的柴油

4.汽油也是石油中提炼出来的吗,怎么炼出来的?

5.这些生活中常见的东西,居然是科学未解之谜?

-20号柴油多少钱_20号柴油是怎么来的

柴油是按照凝固温度来划分的,我国轻柴油的规格(GB252-64)系根据凝点而命名的,有+10号、0号、-10号、-20号和一35号五个牌号,其号数的大小表示柴油凝点温度的高低。如-20号柴油,表示其凝点为一20℃。夏天的话,用+10号的就可以了,冬天就要看具体地区,一般新疆南疆比北疆暖和,冬天大多数时候用-10就可以了,而北疆要用-20的。

超全面的油料知识大全

石油产品的生产方法主要有常减压蒸馏、催化裂化、加氢裂化、催化重整等

,一般来说,无论哪种加工工艺,原油中的轻质组分首先分离出来,如首先是石油气、

汽油,然后是中间基组分,如煤油、柴油,然后是重质组分,如燃料油、沥青质等。

1、汽油

一般来说,汽油按马达法辛烷值分为70号和85号二个牌号,按研究法辛烷值分

为90号、93号、95号和号车用汽油四个牌号,目前日常生活中大家习惯的汽油牌

号就是按研究法辛烷值分类的。汽油通常用作汽油汽车和汽油机的燃料。车用汽油

根据发动机压缩比的高低选用不同牌号的汽油;压缩比较高的,可选用较高牌的汽

油;反之,则选用较低牌号的汽油。航空汽油则通常用作活塞式航空发动机燃料,按

研究法辛烷值分为75号、95号、100号三个牌号,目前只在小型飞机尤其是军用飞机

上使用。

2、煤油

煤油旧称灯油,因为煤油一开始主要用于照明。煤油按质量分为优质品、一级

品和合格品三个等级,主要用于点灯照明、各种喷灯、汽灯、汽化炉和煤油炉等的

燃料;也可用作机械零部件的洗涤剂、橡胶和制药工业溶剂、油墨稀释剂、有机化

工裂解原料;玻璃陶瓷工业、铝板辗轧、金属表面化学热处理等工艺用油。航空煤

油则主要用作喷气式发动机燃料,目前大型客机均使用航空煤油。航空煤油分为1号

、2号、3号三个等级,只有3号航煤被广泛使用。

3、轻柴油和重柴油

轻柴油按质量分为优质品、一级品和合格品三个等级,按凝点分为10号、0号

、-10号、-20号、-35号和-50号六个牌号,10号轻柴油表示其凝点不高于10℃,其余

类推。轻柴油用作柴油汽车、拖拉机和各种高速(1000r/min以上)柴油机的燃料。

根据不同气温、地区和季节,选用不同牌号的轻柴油。气温低,选用凝点较低的轻柴

油,反之,则选用凝点较高的轻柴油。重柴油是中、低速(1000r/min以下)柴油机的

燃料,一般按凝点分为10号、20号和30号三个牌号,转速越低,选用的重柴油凝点越

高。

4、燃料油

燃料油的牌号主要是以运动粘度为依据来划分的,常用的运动粘度的单位为厘

斯,如燃料油的运动粘度为180个厘斯,我们就称它为180号燃料油;根据含硫量的高

低,可以把燃料油分为高硫燃料油和低硫燃料油。我国目前燃料油消费中有一半以

上依赖进口,而进口燃料油中80%为180号燃料油。

我国燃料油消费主要用途集中在发电、交通运输、冶金、化工、轻工等行业

。根据国家统计局统计,其中电力行业的用量最大,占消费总量的32%;其次是石化

行业,主要用于化肥原料和石化企业的燃料,占消费总量的25%;再次是交通运输行

业,主要是船舶燃料,占消费总量的22%;近年来需求增加最多的是建材和轻工行业

(包括平板玻璃、玻璃器皿、建筑及生活陶瓷等制造企业),占消费总量的14%。

生活中的科学小知识有哪些

1、油料的性能及使用

农业机械在作业中,油料费用占整个成本的三分之一。同时,油料的正确使用,可以延长机器的使用寿命,降低修理成本,对提高生产效率具有重要意义。

石油主要是由炭氢组成的化合物。各石油产品是根据其组成的各种化合物沸点不相同提炼的。通过蒸馏方法,按照不同温度范围,可提炼出汽油、柴油和润滑油等产品。

2、农业机械中常用的几种油料

(1)汽油

使用时必须要了解它的几个性能指标。如辛烷值、馏程、饱和蒸气压等。

①辛烷值?是衡量汽油抗爆性能的指标。辛烷值越大,抗爆性能愈好。为了提高汽油的辛烷值。可用铅作催化剂加入汽油。

②馏程?指油料在规定温度下的沸点。一定温度范围内蒸发成分的百分比是评定油料蒸发性能的指标。如果油料的50%馏出温度低,说明这种油料蒸发性好,如果油料的90%馏出温度低,则重质馏分含量少,可减少燃烧时的积炭。

③饱和蒸气压,是测定汽油蒸发性能不可少的指标之一。通常蒸发性能大的汽油蒸发性较强,但过大则容易形成气阻,堵死进油管。

因此规定汽油的蒸气压不得大于500毫米汞柱,则我们即将蒸发性大而又不易形成气阻的蒸气压称饱合蒸气压。

(2)柴油

柴油是农用动力机械的主要粮食,使用时必须要了解以下几个性能指标。

①粘度。是指在常温下柴油的稠稀程度和流动性的指标。粘度大,流动困难,雾化质量差,与空气混合不均匀,燃烧坏,冒黑烟;粘度低,柱圈密封不好,易渗漏,形不成油膜,零件易磨损。

②凝点?是表示油料失去流动性的温度,当温度下降到使柴油失去流动性而凝固时的温度点称凝点。为了使发动机在低温时正常运转,要求柴油有较低的凝固点。我国规定以凝固点作为柴油的牌号。

③馏程?是测定柴油蒸发性能的指标之一,常以规定温度下馏出的容积百分数表示或馏出的容积百分数下的温度表示,对柴油来说,由于柴油混合燃烧时伺很短蒸发性不好就来不及蒸发燃烧不完全,所以高速柴油机用馏程低的轻柴油,低速柴油机则选用重柴油。

④十六烷值?是评定柴油在燃烧过程中粗暴性程度的重要指标。十六烷值愈高,自然着火温度则低,着火容易,但十六烷值不能太高。当大于65?时发动机反而冒黑烟,油耗增加。所以柴油的十六烷值一般规定在40~60之间。

⑤闪点?在规定条件下加热油料。它的蒸气与空气混合后当接触火焰后有闪光发生。这时油的温度称为闪点。闪点的高低表示油料在高温下的安定性。

另外柴油还有腐蚀性,积炭性和结胶性等。只有了解了柴油的性能指标,才能正确选用柴油的牌号。柴油的牌号是以凝固点来表示的。在我国目前农业机械中规定使用的柴油有0号、10号、20号、35号和农用20号等。它们的凝固点分别为0℃、一10℃、一20℃、一35℃、+20℃,选用时根据当地的气候条件而定。

(3)润滑油

润滑油是用来减少机器中相互摩擦零件表面的磨损和摩擦发热的主要油料,现代润滑油还具备了清洁、分散、抗氧化等功能。按用途不同可分为汽机油、柴机油和齿轮油。以下介绍一些相关参数。

①润滑油粘度。是用来表示油料流动的难易程度,直接关系到润滑油的流动性及在两摩擦表面所形成的油膜的厚度。粘度大的润滑油不能流到间隙很小的配合体机件的摩擦表面,不能起到润滑作用。但是能承受较大压力的负荷,不易从摩擦表面间挤出,而保持一定厚度的油膜。

②润滑油的凝点。是表示油料失去流动性的温度,对润滑油来说,在天气寒冷时,油料凝结使润滑油性能显著变坏,所以在低温下工作的机械应选凝点低的润滑油。

③浮游性。是表示抑制生成胶膜和沉淀的指标。浮游性良好的润滑油,能使氧化物悬浮在油中,不沉积在金属零件的表面上,避免胶状薄膜的生成。

④腐蚀性。润滑油中的酸、碱介质或机油氧化产生有机酸,都会对金属表面产生化学作用,引起金属成分和性质的改变,使金属损坏,引起金属成分和性质改变的这种作用称作腐蚀性。

汽机油的牌号是按100℃运动粘度分类的。它有6号、10号、15号、6号低凝汽机油和8号低凝汽机油几种。其牌号越高粘度越大。

柴机油按100℃运动粘度分为8号、11号、14号、16号、20号、11号低油、1l号稠化油14号稠化油几种,牌号越高则粘度越大、柴机油的选用取决于柴油机曲轴轴瓦的合金材料,如果是巴氏合金(锡基铜合金)可用汽机油。如果是铅青铜合金,镉镍合金则应使用柴机油。

齿轮油根据用途分为齿轮油和双曲线齿轮油两类。按100℃运动粘度齿轮油分为20号、30号和通用齿轮油;双曲线齿轮油分为22号和28号两种。据生产工艺的不同另有一种合成13号双曲线齿轮油。

各种牌号的双曲线齿轮油均加有抗磨添加剂。具有良好的抗磨性能。不能用没有添加剂的齿轮油代替。

(4)润滑脂

润滑脂俗称黄油,它由润滑油和稠化剂制成。润滑脂根据所加入稠化剂的不同,分为钙基润滑脂、钠基润滑脂和钙钠基润滑脂三种。常温下呈油膏状,耐压性强缓冲性也好,不易流失。密封性和粘温性好,适用于润滑密封困难、负荷重、温度高、较长时间不用更换的润滑部位。使用时必须了解润滑油的针入度、滴点、胶体安全性等指标。

我国目前生产的钙基润滑脂有五个牌号:

ZG?一1、ZG一2、ZG一3、ZG一4、ZG一5

“Z”表示“脂”、“G”表示“钙”、l?2?3?4?5?为针入度的系列号,表示润滑脂稠度的大小。

我国目前生产的钠基润滑脂有ZN-1H、ZN-2H、ZN-3H三种牌号,“N”表示“钠”,其它同上所述。

钙钠基润滑脂l号、2号、润滑脂的牌号是按针入度的大小来区分的,针入度越小,牌号越高,稠度越大,脂越硬。

柴油货车冬季加多少号的柴油

生活中的科学小知识有哪些1

 柴油使用小技巧

 冒着黑烟、“哒哒哒”往前跑的拖拉机使用的燃料就是柴油。普通柴油是以石油原油为原料,经过冶炼技术生产的达到一定标准的一类油品。人们常看到的如标为0号、10号、20号、32号的轻柴油,是指它们的凝点分别不高于0℃、-10℃、-20℃、-35℃。设你的汽车用柴油作燃料,在使用时,应根据不同地区和季节选用不同标号的轻柴油。一般来说,温度低时要选用凝点较低的轻柴油;反之,则选用凝点较高的轻柴油,且凝点应低于当地气温5℃。

 插头小常识

 为什么电风扇、洗衣机、电冰箱等家用电器大多用三线插头?三线插头与三相插头有什么区别?

 三相电器指三根不相同的火线,它们每两根线之间的电压都是380伏,一般用于动力系统,多见于工业用电。而家用电器一般用单相电源供电,其三根线分别是火线、零线(中性线)和地线,火线和零线之间的电压是220伏,所以这不是三相电,它的插头和插座也不是三相插头和三相插座,地线为的是保障安全。

 拖拉机打滑怎么办

 拖拉机是非常重要的一种农业机械,在农村非常常见,仔细看拖拉机的轮胎,你会发现轮胎上有很多突起,其目的是为了增加轮胎与地面的摩擦力,使拖拉机在田间作业时,不容易打滑。拖拉机的重量也与摩擦力有关,同样情况下,拖拉机的重量越重,摩擦力越大。因此,当拖拉机打滑时,可以通过增加其重量来解决。由于拖拉机等农业机械是以柴油为动力的,其排出的高浓度微粒悬浮在空气中的时间较长,且易被人体吸入,已经成为城市近郊主要污染之一。

 哈喇味的食品有毒

 在日常生活中,人们经常会遇到食品腐败变质的情况。食品腐败变质的过程,是食品中蛋白质、碳水化合物、脂肪的分解变化过程,其程度因食品种类、微生物种类和数量及环境条件的不同而异。通常脂肪的变质主要是因为酸败,为食品诱变性污染的一种。微生物所产生的酶、紫外线和氧可以使食品中的中性脂肪分解为甘油和脂肪酸,脂肪酸进一步分解生成过氧化物和氧化物,随之产生具有特殊刺激气味的酮和醛等酸败产物,即所谓哈喇味。食用因滞销而存放过久的已产生哈喇味的食品,会导致中毒,临床表现以胃肠病状为主,有的患者会出现头晕、头痛、腹胀、腹泻、腹痛、恶心呕吐等症状。

 功能食品效用待验证

 随着经济的发展和科学的进步,人们已不再满足于“食能果腹”,而更崇尚对人类健康更加科学有益的多功能保健食品。何为功能食品?国际生命科学研究院欧洲专家表示:“一种食品如果可以令人信服地证明对身体某种或多种机能有益处,有足够营养改善健康状况或能减少患病,即可被称为功能食品。”功能食品和一般食品都能提供人体生存必需的基本营养物质(食品的第一功能),并具有特定的色、香、味、形(食品的第二功能)。但功能食品含有一定量的功效成分(生理活性物质),能调节人体的机能(食品的第三功能);功能食品一般有特定的食用范围(特定人群),而一般食品无特定的食用范围。

 需要指出的是,国内外对于功能食品的研究和开发尚处于起始阶段,其效用还有待于进一步验证。目前的许多广告存在言过其实的情况,因此消费者不要盲目听信广告的宣传。从科学角度讲,注意平时营养均衡的饮食,如大量新鲜水果、蔬菜、维生素和粗纤维食物构成的多样化保健饮食及有规律的生活习惯、适时适量的运动、愉快的心情等,才是健康的根本保证。

 科技助推农业工程

 随着科学技术在农业上的应用不断增加,农业工程所涉及的领域和包括的范围也越来越多。如农业水土工程、农业机械化与自动化工程、农业电子与信息技术、农产品产后处理与加工工程、设施农业与环境控制工程、农村能源、农业废弃物处理和环保工程等等。现代农业工程不但创造出了远远高于传统农业的生产效益,还展现出一幅幅激动人心的农业生产画面。借助先进的工程技术,人们不但能看到结上万个果子的西红柿树,还能看到装有空调、计算机,配备GIS、GPS和RS系统的拖拉机被用来在田里定点配方施肥、定点喷药除草呢。

 能源与人类发展息息相关

 人们很早就已经知道,能量既不能被创造,也不能被消灭,那么,能量是从哪里来的呢?能量存在的形态各不相同,其来源也不同。我们将能源分为两种:不可再生能源和可再生能源。不可再生能源就是那些一旦被消耗,在短时间内不可能再恢复的能源,如煤炭、石油、天然气等。据探测,石油、天然气和煤炭若以现在的消耗速度来计算,将分别在45年、60年、250年消耗殆尽。与“不可再生能源”相对的是“可再生能源”,像风能、潮汐能、太阳能、水能都是“可再生能源”或者叫“可更新能源”。这些能源是取之不尽、用之不竭的,由于它在使用过程中对环境没有任何污染,所以又被称为“清洁能源”。因为地球上的不可再生能源有限,因此人们要更加关注可再生能源的产生、存储及传输。

 人类从远古的钻燧取火到今天核能的和平利用,人类进步发展的过程,实际上就是一部不断向自然界摄取和利用能源的过程。能源与人们的生活息息相关,而能源短缺是目前普遍存在的问题。如一些居民常常会抱怨电力公司的拉闸限电、电价提高;汽车司机抱怨油价的不断上升。在今天,能源已经成为对国家经济、社会、政治安全有着重大稳定作用的重要战略,大家熟知的伊拉克战争事实上源于对能源的争夺。三峡工程、西气东输工程等国家重大工程的实施就是为了解决越来越严重的能源短缺问题,以满足经济快速发展对能源的需求。而节约能源,合理利用能源,提高能源的利用效率,特别是对不可再生能源的节约、高效利用是目前人们亟待要做到的。

生活中的科学小知识有哪些2

 1、冰糕为什么会冒气?

 冰糕冒气是因为外界空气中有不少眼睛看不见的水汽,碰到很冷的冰糕时,一遇冷就液化成雾滴包围在冰糕周围,看上去似乎是冰糕在“冒气”一样。

 2、向日葵为什么总是向着太阳?

 向日葵的茎部含有一种奇妙的植物生长素。这种生长素非常怕光。一遇光线照射,它就会到背光的一面去,同时它还刺激背光一面的细胞迅速繁殖,所以,背光的一面就比向光的一面生长的快,使向日葵产生了向光性弯曲。

 3、蝉为什么会蜕皮?

 蝉的外壳(外骨骼)是坚硬的,不能随着蝉的.生长而扩大,当蝉生长到一定阶段时,蝉的外骨骼限制了蝉的生长,蝉将原有的外骨骼脱去,就是蝉蜕。

 4、蜜蜂怎样酿蜜?

 蜂先把来的花朵甜汁吐到一个空的蜂房中,到了晚上,再把甜汁吸到自己的蜜胃里进行调制,然后再吐出来,再吞进去,如此轮番吞吞吐吐,要进行100~240次,最后才酿成香甜的蜂蜜

 5、挂在壁墙上的石英钟,当电池的电能耗尽而停止走动时,其秒针往往停在刻度盘上“9”的位置。这是由于秒针在“9”位置处受到重力矩的阻碍作用最大。

 6、有时自来水管在邻近的水龙头放水时,偶尔发生阵阵的响声。这是由于水从水龙头冲出时引起水管共振的缘故。

 7、对着电视画面拍照,应关闭照相机闪光灯和室内照明灯,这样照出的照片画面更清晰。因为闪光灯和照明灯在电视屏上的反射光会干扰电视画面的透射光。

 8、冰冻的肉在水中比在同温度的空气中解冻得快。烧烫的铁钉放入水中比在同温度的空气中冷却得快。装有滚烫的开水的杯子浸入水中比在同温度的空气中冷却得快。这些现象都表明:水的热传递性比空气好。

 9、锅内盛有冷水时,锅底外表面附着的水滴在火焰上较长时间才能被烧干,且直到烧干也不沸腾,这是由于水滴、锅和锅内的水三者保持热传导,温度大致相同,只要锅内的水未沸腾,水滴也不会沸腾,水滴在火焰上蒸发而渐渐地被烧干。

 10、走样的镜子,人距镜越远越走样。因为镜里的像是由镜后镀银面的反射形成的,镀银面不平或玻璃厚薄不均匀都会产生走样。走样的镜子,人距镜越远,由光放大原理,镀银面的反射光到达的位置偏离正常位置就越大,镜子就越走样。

 11、天然气炉的喷气嘴侧面有几个与外界相通的小孔,但天然气不会从侧面小孔喷出,只从喷口喷出。这是由于喷嘴处天然气的气流速度大,根据流体力学原理,流速大,压强小,气流表面压强小于侧面孔外的大气压强,所以天然气不会以喷管侧面小孔喷出。

 12、将气球吹大后,用手捏住吹口,然后突然放手,气球内气流喷出,气球因反冲而运动。可以看见气球运动的路线曲折多变。这有两个原因:一是吹大的气球各处厚薄不均匀,张力不均匀,使气球放气时各处收缩不均匀而摆动,从而运动方向不断变化;二是气球在收缩过程中形状不断变化,因而在运动过程中气球表面处的气流速度也在不断变化,根据流体力学原理,流速大,压强小,所以气球表面处受空气的压力也在不断变化,气球因此摆动不停。

汽油也是石油中提炼出来的吗,怎么炼出来的?

冬季加多少号的柴油要根据气温来选择。

柴油按凝点分级,轻柴油有5、0、-10、-20、-35、-50六个牌号,重柴油有10、20、30三个牌号。?

选用柴油的依据是使用时的温度:?

1、温度在4℃以上时选用0#柴油?

2、温度在4℃~-5℃时选用-10#柴油;?

3、温度在-5℃~14℃时选用-20#柴油;?

4、温度在-14℃~-29℃时选用-35#柴油;?

选用柴油的牌号如果高于上述温度,发动机中的燃油系统就可能结蜡,堵塞油路,影响发动机的正常工作。?

扩展资料:

柴油使用注意事项:

1、防止水份、机械杂质混入。?

2、严禁与汽油混合后用于照明或作煤油炉燃料。?

3、柴油在使用前都须经过沉淀、过滤、除去杂质和水份,以保证柴油机燃料供给系统的正常工作。

4、低温时,为改善柴油的低温流动性,允许在柴油中渗入少量煤油,但闪点可能不合格。但决不允许在柴油中加入汽油来改善柴油的低温流动性。

百度百科-柴油

这些生活中常见的东西,居然是科学未解之谜?

是的 汽油、柴油这些都是用石油(实际是原油)炼出来的,其主要原理 石油是由分子大小和化学结构不同的烃类和非烃类组成的复杂混合物,通过本章所讲述的预处理和原油蒸馏方法,可以根据其组分沸点的差异,从原油中提炼出直馏汽油、煤油、轻重柴油及各种润滑油馏分等,这就是原油的一次加工过程。然后将这些半成品中的一部分或大部分作为原料,进行原油二次加工,如以后章节要介绍的催化裂化、催化重整、加氢裂化等向后延伸的炼制过程,可提高石油产品的质量和轻质油收率。

一、原油的预处理

二 基本原理

原油中的盐大部分溶于所含水中,故脱盐脱水是同时进行的。为了脱除悬浮在原油中的盐粒,在原油中注入一定量的新鲜水(注入量一般为5%),充分混合,然后在破乳剂和高压电场的作用下,使微小水滴逐步聚集成较大水滴,借重力从油中沉降分离,达到脱盐脱水的目的,这通常称为电化学脱盐脱水过程。

原油乳化液通过高压电场时,在分散相水滴上形成感应电荷,带有正、负电荷的水滴在作定向位移时,相互碰撞而合成大水滴,加速沉降。水滴直径愈大,原油和水的相对密度差愈大,温度愈高,原油粘度愈小,沉降速度愈快。在这些因素中,水滴直径和油水相对密度差是关键,当水滴直径小到使其下降速度小于原油上升速度时,水滴就不能下沉,而随油上浮,达不到沉降分离的目的。

三 工艺过程

我国各炼厂大都用两级脱盐脱水流程。原油自油罐抽出后,先与淡水、破乳剂按比例混合,经加热到规定温度,送入一级脱盐罐,一级电脱盐的脱盐率在90%~95%之间,在进入二级脱盐之前,仍需注入淡水,一级注水是为了溶解悬浮的盐粒,二级注水是为了增大原油中的水量,以增大水滴的偶极聚结力。

二、原油的蒸馏

一 原油蒸馏的基本原理及特点

1、蒸馏与精馏 蒸馏是液体混合物加热,其中轻组分汽化,将其导出进行冷凝,使其轻重组分得到分离。蒸馏依据原理是混合物中各组分沸点(挥发度)的不同。

蒸馏有多种形式,可归纳为闪蒸(平衡汽化或一次汽化),简单蒸馏(渐次汽化)和精馏三种。其中简单蒸馏常用于实验室或小型装置上,它属于间歇式蒸馏过程,分离程度不高。

闪蒸过程是将液体混合物进料加热至部分汽化,经过减压阀,在一个容器(闪蒸罐、蒸发塔)的空间内,于一定温度压力下,使汽液两相迅速分离,得到相应的汽相和液相产物。精馏是分离液体混合物的很有效的手段,它是在精馏塔内进行的。

2、原油常压蒸馏特点 原油的常压蒸馏就是原油在常压(或稍高于常压)下进行的蒸馏,所用的蒸馏设备叫做原油常压精馏塔,它具有以下工艺特点:

(1)常压塔是一个复合塔 原油通过常压蒸馏要切割成汽油、煤油、轻柴油、重柴油和重油等四、五种产品馏分。按照一般的多元精馏办法,需要有n-1个精馏塔才能把原料分割成n个馏分。而原油常压精馏塔却是在塔的侧部开若于侧线以得到如上所述的多个产品馏分,就像n个塔叠在一起一样,故称为复合塔。

(2)常压塔的原料和产品都是组成复杂的混合物 原油经过常压蒸馏可得到沸点范围不同的馏分,如汽油、煤油、柴油等轻质馏分油和常压重油,这些产品仍然是复杂的混合物(其质量是靠一些质量标准来控制的。如汽油馏程的干点不能高于205℃)。35℃~150℃是石脑油(naphtha)或重整原料,130℃~250℃是煤油馏分,250℃~300℃是柴油馏分,300℃~350℃是重柴油馏分,可作催化裂化原料。>350℃是常压重油。

(3)汽提段和汽提塔 对石油精馏塔,提馏段的底部常常不设再沸器,因为塔底温度较高,一般在350℃左右,在这样的高温下,很难找到合适的再沸器热源,因此,通常向底部吹入少量过热水蒸汽,以降低塔内的油汽分压,使混入塔底重油中的轻组分汽化,这种方法称为汽提。汽提所用的水蒸汽通常是400℃~450℃,约为3MPA的过热水蒸汽。

在复合塔内,汽油、煤油、柴油等产品之间只有精馏段而没有提馏段,这样侧线产品中会含有相当数量的轻馏分,这样不仅影响本侧线产品的质量,而且降低了较轻馏分的收率。所以通常在常压塔的旁边设置若干个侧线汽提塔,这些汽提塔重叠起来,但相互之间是隔开的,侧线产品从常压塔中部抽出,送入汽提塔上部,从该塔入水蒸汽进行汽提,汽提出的低沸点组分同水蒸汽一道从汽提塔顶部引出返回主塔,侧线产品由汽提塔底部抽出送出装置。

(4)常压塔常设置中段循环回流 在原油精馏塔中,除了用塔顶回流时,通常还设置1~2个中段循环回流,即从精馏塔上部的精馏段引出部分液相热油,经与其它冷流换热或冷却后再返回塔中,返回口比抽出口通常高2~3层塔板。

中段循环回流的作用是,在保证产品分离效果的前提下,取走精馏塔中多余的热量,这些热量因温位较高,因而是价很高的可利用热源。用中段循环回流的好处是,在相同的处理量下可缩小塔径,或者在相同的塔径下可提高塔的处理能力。

3、减压蒸馏及其特点 原油在常压蒸馏的条件下,只能够得到各种轻质馏分。常压塔底产物即常压重油,是原油中比较重的部分,沸点一般高于350℃,而各种高沸点馏分,如裂化原料和润滑油馏分等都存在其中。要想从重油中分出这些馏分,就需要把温度提到350℃以上,而在这一高温下,原油中的稳定组分和一部分烃类就会发生分解,降低了产品质量和收率。为此,将常压重油在减压条件下蒸馏,蒸馏温度一般限制在420℃以下。降低压力使油品的沸点相应下降,上述高沸点馏分就会在较低的温度下汽化,从而避免了高沸点馏分的分解。减压塔是在压力低于100kPa的负压下进行蒸馏操作。

减压塔的抽真空设备常用的是蒸汽喷射器或机械真空泵。蒸汽喷射器的结构简单,使用可靠而无需动力机械,水蒸汽来源充足、安全,因此,得到广泛应用。而机械真空泵只在一些干式减压蒸馏塔和小炼油厂的减压塔中用。

与一般的精馏塔和原油常压精馏塔相比,减压精馏塔有如下几个特点:

⑴ 根据生产任务不同,减压精馏塔分燃料型与润滑油型两种。润滑油型减压塔以生产润滑油料为主,这些馏分经过进一步加工,制取各种润滑油。燃料型减压塔主要生产二次加工的原料,如催化裂化或加氢裂化原料。

⑵ 减压精馏塔的塔板数少,压降小,真空度高,塔径大。为了尽量提高拔出深度而又避免分解,要求减压塔在经济合理的条件下尽可能提高汽化段的真空度。因此,一方面要在塔顶配备强有力的抽真空设备,同时要减小塔板的压力降。减压塔内应用压降较小的塔板,常用的有舌型塔板、网孔塔板等。减压馏分之间的分馏精确度要求一般比常压蒸馏的要求低,因此通常在减压塔的两个侧线馏分之间只设3~5块精馏塔板。在减压下,塔内的油汽、水蒸汽、不凝气的体积变大,减压塔径变大。

⑶ 缩短渣油在减压塔内的停留时间 塔底减压渣油是最重的物料,如果在高温下停留时间过长,则其分解、缩合等反应会进行得比较显著,导致不凝气增加,使塔的真空度下降,塔底部分结焦,影响塔的正常操作。因此,减压塔底部的直径常常缩小以缩短渣油在塔内的停留时间。另外,减压塔顶不出产品,减压塔的上部汽相负荷小,通常也用缩径的办法,使减压塔成为一个中间粗、两头细的精馏塔。

催化裂化过程具有以下几个特点:

⑴ 轻质油收率高,可达70%~80%;

⑵ 催化裂化汽油的辛烷值高,马达法辛烷值可达78,汽油的安定性也较好;

⑶ 催化裂化柴油十六烷值较低,常与直馏柴油调合使用或经加氢精制提高十六烷值,以满足规格要求;

⑷ 催化裂化气体,C3和C4气体占80%,其中C3丙烯又占70%,C4中各种丁烯可占55%,是优良的石油化工原料和生产高辛烷值组分的原料。

根据所用原料,催化剂和操作条件的不同,催化裂化各产品的产率和组成略有不同,大体上,气体产率为10%~20% ,汽油产率为30%~50%,柴油产率不超过40%,焦炭产率5%~7%左右。由以上产品产率和产品质量情况可以看出,催化裂化过程的主要目的是生产汽油。我国的公共交通运输事业和发展农业都需要大量柴油,所以催化裂化的发展都在大量生产汽油的同时,能提高柴油的产率,这是我国催化裂化技术的特点。

催化裂化的化学原理

一 催化裂化催化剂

1936年工业上首先使用经酸处理的蒙脱石催化剂。因为这种催化剂在高温热稳定性不高,再生性能不好,后来被合成的无定形硅酸铝所取代。六十年代又出现了含沸石的催化剂。可用作裂化催化剂的所有沸石中,只有Y型沸石具有工业意义。在许多情况下,将稀土元素引入Y型沸石中。Y型沸石在硅酸铝基体中的加入量可达15%。用沸石催化剂后汽油的选择性大大提高,汽油的辛烷值也较高,同时气体和焦炭产率降低。工业上应用所谓超稳Y型沸石分子筛,它在高达1200K时晶体结构能保持不变。

催化裂化实质上是正碳离子的化学。正碳离子经过氢负离子转移步骤生成

由于高温,正碳离子可分解为较小的正碳离子和一个烯烃分子。

生成的烯烃比初始的烷烃原料易于变为正碳离子,裂化速度也较快。

由于C-C键断裂一般发生在正碳离子的β位置,所以催化裂化可生成大量的C3~C4烃类气体,只有少量的甲烷和乙烷生成。新正碳离子或裂化,或夺得一个氢负离子而生成烷烃分子,或发生异构化、芳构化等反应。

现在选用的沸石分子筛具有自己特定的孔径大小,常常对原料和产物都表现了不同的选择特性。如在HZSM-5沸石分子筛上烷烃和支链烷烃的裂化速度依下列次序递降:正构烷烃 >一甲基烷烃 > 二甲基烷烃沸石分子筛这种对原料分子大小表现的选择性,和对产物分布的影响称为它们的择形性。ZSM-5用作脱蜡过程的催化剂,就是利用了沸石的择形催化裂化功能。

二 催化裂化的化学原理

催化裂化条件下各族烃类的主要反应:

1、烷烃裂化为较小分子的烯烃和烷烃,如:C16H34 ? C8H16 + C8H18

2、烯烃裂化为较小分子的烯烃。

3、异构化反应 正构烷烃 ? 异构烷烃 烯烃 ? 异构烯烃

4、氢转移反应 环烷烃+ 烯烃 ? 芳烃+烷烃

5、芳构化反应

6、环烷烃裂化为烯烃

7、烷基芳烃脱烷基反应 烷基芳烃 ? 芳烃+ 烯烃

8、缩合反应 单环芳烃可缩合成稠环芳烃,最后缩合成焦炭,并放出氢气,使烯烃饱和。

由以上反应可见,在烃类的催化裂化反应过程中,裂化反应的进行,使大分子分解为小分子的烃类,这是催化裂化工艺成为重质油轻质化重要手段的根本依据。而氢转移反应使催化汽油饱和度提高,安定性好。异构化、芳构化反应是催化汽油辛烷值提高的重要原因。

催化裂化得到的石油馏分仍然是许多种烃类组成的复杂混合物。催化裂化并不是各族烃类单独反应的综合结果,在反应条件下,任何一种烃类的反应都将受到同时存在的其它烃类的影响,并且还需要考虑催化剂存在对过程的影响。

石油馏分的催化裂化反应是属于气-固非均相催化反应。反应物首先是从油气流扩散到催化剂孔隙内,并且被吸附在催化剂的表面上,在催化剂的作用下进行反应,生成的产物再从催化剂表面上脱附,然后扩散到油气流中,导出反应器。因此烃类进行催化裂化反应的先决条件是在催化剂表面上的吸附。实验证明,碳原子相同的各种烃类,吸附能力的大小顺序是: 稠环芳烃 > 稠环、多环环烷烃 > 烯烃 > 烷基芳烃 > 单环环烷烃 > 烷烃

而按烃类的化学反应速度顺序排列,大致情况如下:烯烃 > 大分子单烷侧链的单环芳烃 > 异构烷烃和环烷烃 > 小分子单烷侧链的单环芳烃> 正构烷烃 > 稠环芳烃

综合上述两个排列顺序可知,石油馏分中芳烃虽然吸附性能强,但反应能力弱,吸附在催化剂表面上占据了大部分表面积,阻碍了其它烃类的吸附和反应,使整个石油馏分的反应速度变慢。烷烃虽然反应速度快,但吸附能力弱,对原料反应的总效应不利。而环烷烃既有一定的吸附能力又具适宜的反应速度。因此认为,富含环烷烃的石油馏分应是催化裂化的理想原料。但实际生产中,这类原料并不多见。

石油馏分催化裂化的另一特点就是该过程是一个复杂反应过程。反应可同时向几个方向进行,中间产物又可继续反应,这种反应属于平行-顺序反应。

平行-顺序反应的一个重要特点是反应深度对产品产率分配有重大影响。如图3-3所示,随着反应时间的增长,转化率提高,气体和焦炭产率一直增加。汽油产率开始时增加,经过一最高点后又下降。这是因为到一定反应深度后,汽油分解成气体的反应速度超过汽油的生成速度,即二次反应速度超过了一次反应速度。因此要根据原料的特点选择合适的转化率,这一转化率应选择在汽油产率最高点附近。

催化裂化装置的工艺流程

催化裂化技术的发展密切依赖于催化剂的发展。有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化。选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。

催化裂化装置通常由三大部分组成,即反应?再生系统、分馏系统和吸收稳定系统。其中反应––再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下:

一 反应––再生系统

新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370℃左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650℃~700℃)催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒的高线速通过提升管,经快速分离器分离后,大部分催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统。

积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上的少量油气。待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650℃~680℃)。再生器维持0.15MPa~0.25MPa (表)的顶部压力,床层线速约0.7米/秒~1.0米/秒。再生后的催化剂经淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。

烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部分催化剂,烟气经集气室和双动滑阀排入烟囱。再生烟气温度很高而且含有约5%~10% CO,为了利用其热量,不少装置设有CO锅炉,利用再生烟气产生水蒸汽。对于操作压力较高的装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电能。

二 分馏系统

分馏系统的作用是将反应?再生系统的产物进行分离,得到部分产品和半成品。

由反应?再生系统来的高温油气进入催化分馏塔下部,经装有挡板的脱过热段脱热后进入分馏段,经分馏后得到富气、粗汽油、轻柴油、重柴油、回炼油和油浆。富气和粗汽油去吸收稳定系统;轻、重柴油经汽提、换热或冷却后出装置,回炼油返回反应––再生系统进行回炼。油浆的一部分送反应再生系统回炼,另一部分经换热后循环回分馏塔。为了取走分馏塔的过剩热量以使塔内气、液相负荷分布均匀,在塔的不同位置分别设有4个循环回流:顶循环回流,一中段回流、二中段回流和油浆循环回流。

催化裂化分馏塔底部的脱过热段装有约十块人字形挡板。由于进料是460℃以上的带有催化剂粉末的过热油气,因此必须先把油气冷却到饱和状态并洗下夹带的粉尘以便进行分馏和避免堵塞塔盘。因此由塔底抽出的油浆经冷却后返回人字形挡板的上方与由塔底上来的油气逆流接触,一方面使油气冷却至饱和状态,另一方面也洗下油气夹带的粉尘。

三 吸收––稳定系统:

从分馏塔顶油气分离器出来的富气中带有汽油组分,而粗汽油中则溶解有C3、C4甚至C2组分。吸收––稳定系统的作用就是利用吸收和精馏的方法将富气和粗汽油分离成干气(≤C2)、液化气(C3、C4)和蒸汽压合格的稳定汽油。

影响催化裂化反应深度的主要因素

一 几个基本概念

1、转化率 在催化裂化工艺中,往往要循环部分生成油、也称回炼油。在工业上用回炼操作是为了获得较高的轻质油产率。因此,转化率又有单程转化率和总转化率之别。

2、空速和反应时间 每小时进入反应器的原料量与反应器内催化剂藏量之比称为空速。

空速的单位为时-1,空速越高,表明催化剂与油接触时间越短,装置处理能力越大。

在考察催化裂化反应时,人们常用空速的倒数来相对地表示反应时间的长短。

3、剂油比 催化剂循环量与总进料量之比称为剂油比,用C/O表示:

在同一条件下,剂油比大,表明原料油能与更多的催化剂接触。

二 影响催化裂化反应深度的主要因素

影响催化裂化反应转化率的主要因素有:原料性质、反应温度、反应压力、反应时间。

1、原料油的性质 原料油性质主要是其化学组成。原料油组成中以环烷烃含量多的原料,裂化反应速度较快,气体、汽油产率比较高,焦炭产率比较低,选择性比较好。对富含芳烃的原料,则裂化反应进行缓慢,选择性较差。另外,原料油的残炭值和重金属含量高,会使焦炭和气体产率增加。

2、反应温度 反应温度对反应速度、产品分布和产品质量都有很大影响。在生产中温度是调节反应速度和转化率的主要因素,不同产品方案,选择不同的反应温度来实现,对多产柴油方案,用较低的反应温度(450℃~470℃),在低转化率高回炼比下操作。对多产汽油方案,反应温度较高(500℃~530℃); 用高转化率低回炼比。

3、反应压力 提高反应压力的实质就是提高油气反应物的浓度,或确切地说,油气的分压提高,有利于反应速度加快。提高反应压力有利于缩合反应,焦炭产率明显增高,气体中烯烃相对产率下降,汽油产率略有下降,但安定性提高。提升管催化裂化反应器压力控制在0.3MPa ~0.37MPa。

4、空速和反应时间 在提升管反应器中反应时间就是油气在提升管中的停留时间。 图3-5表示提升管催化裂化的反应时间与转化率的关系。由图可见,反应开始阶段,反应速度最快,1秒后转化率的增加逐渐趋于缓和。反应时间延长,会引起汽油的二次分解,同时因为分子筛催化剂具有较高的氢转移活性,而使丙烯、丁烯产率降低。提升管反应器内进料的反应时间要根据原料油的性质,产品的要求来定,一般约为1秒~4秒。

重油催化裂化

重油催化裂化(residue fluid catalytIC cracking,即RFCC)工艺的产品是市场极需的高辛烷值汽油馏分,轻柴油馏分和石油化学工业需要的气体原料。由于该工艺用了分子筛催化剂、提升管反应器和钝化剂等,使产品分布接近一般流化催化裂化工艺。但是重油原料中一般有30%~50%的廉价减压渣油,因此,重油流化催化裂化工艺的经济性明显优于一般流化催化工艺,是近年来得到迅速发展的重油加工技术。

一 重油催化裂化的原料

所谓重油是指常压渣油、减压渣油的脱沥青油以及减压渣油、加氢脱金属或脱硫渣油所组成的混合油。典型的重油是馏程大于350℃的常压渣油或加氢脱硫常压渣油。与减压馏分相比,重油催化裂化原料油存在如下特点:① 粘度大,沸点高;② 多环芳香性物质含量高;③ 重金属含量高;④ 含硫、氮化合物较多。因此,用重油为原料进行催化裂化时会出现焦炭产率高,催化剂重金属污染严重以及产物硫、氮含量较高等问题。

二 重油催化裂化的操作条件

为了尽量降低焦炭产率,重油催化裂化在操作条件上取如下措施:

1、改善原料油的雾化和汽化 由于渣油在催化裂化过程中呈气液相混合状态,当液相渣油与热催化剂接触时,被催化剂吸附并进入颗粒内部的微孔,进而裂化成焦炭,会使生焦量上升,催化活性下降。因此可见,为了减少催化剂上的生焦量,必须尽可能地减少液相部分的比例,所以要强化催化裂化前期过程中的雾化和蒸发过程,提高气化率,减少液固反应。

2、用较高的反应温度和较短的反应时间 当反应温度提高时,原料的裂化反应加快较多,而生焦反应则加快较少。与此同时,当温度提高时,会促使热裂化反应的加剧,从而使重油催化裂化气体中C1、C2增加,C3、C4减少。所以宜用较高反应温度和较短的反应时间。

三 重油催化裂化催化剂

重油催化裂化要求其催化剂具有较高的热稳定性和水热稳定性,并且有较强的抗重金属污染的能力。所以,目前主要用Y型沸石分子筛和超稳Y型沸石分子筛催化剂。

四 重油催化裂化工艺

1、重油催化裂化工艺与一般催化裂化工艺的异同点 两工艺既有相同的部分,亦有不同之处,完全是由于原料不同造成的。不同之处主要表现在,重油催化裂化在进料方式、再生系统型式、催化剂选用和SOX排放量的控制方面均不同于一般的催化裂化工艺;在取走过剩热量的设施,产品处理、污水处理和金属钝化等方面,则是一般催化裂化工艺所没有的。但在催化剂的流化,输送和回收方面,在两器压力平衡的计算方面,两者完全相同。在分馏系统的流程和设备方面,在反应机理、再生机理、热平衡的计算方法和反应—再生系统的设备上两者基本相同。

2、重油催化裂化工艺 重油催化裂化工艺主要由HOC(hey oil cracking)工艺、RCC(reduced crude oil conversion,常压渣油转化)工艺、Stone &Webster工艺和 ART(asphalt resid treating 沥青渣油处理)工艺等,其中最典型的工艺为Stone &Webster 流化催化裂化工艺。

从加热炉或换热器出来的原料经大量的蒸汽和喷嘴雾化后,进入输送管,与从再生器来的热再生催化剂混合,然后一道进入提升管反应器的催化剂床层进行反应,由此生成的气相产物经旋风分离器脱除其中的催化剂后进入分馏系统,分成干气(C1~C2)、液化气(C3~C4)、汽油、轻柴油(国外称轻瓦斯油)、重柴油(国外称重瓦斯油)和澄清油等。所生成的多碳粘稠产物附于催化剂上,随催化剂向下经汽提段,逐渐变成焦炭;附有焦炭的催化剂离开汽提段后,进入再生器再生。再生用两个互相独立的再生器进行两段再生。前一再生器控制在高的CO/CO2比下操作,焦炭中的绝大部分氢和一部分碳在此被烧掉,从而为后一再生器在无水存在的情况和高温下操作而不致使催化剂严重减活创造条件。后一再生器可在有利于完全再生的强化条件(温度达750℃)下操作。两个再生器的烟气分别通过各自的旋风分离器排出。该工艺是热平衡式的,所以,不需要象其他工艺那样有取热设施。用该工艺的工业装置在我国镇海炼油厂、武汉炼油厂、广州炼油厂、长岭炼油厂、南京炼油厂都已相继投产。

催化重整

催化重整是最重要的炼油过程之一。“重整”是指烃类分子重新排列成新的分子结构,而不改变分子大小的加工过程。重整过程是在催化剂存在之下进行的。用铂催化剂的重整过程称铂重整,用铂铼催化剂的称为铂铼重整,而用多金属催化剂的重整过程称为多金属重整。催化重整是石油加工过程中重要的二次加工方法,其目的是用以生产高辛烷值汽油或化工原料?––芳香烃,同时副产大量氢气可作为加氢工艺的氢气来源。下面介绍催化重整的工艺要求和工业装置。

一、催化重整(catalytic reformation )的化学反映

重整催化剂通常含有千分之几的贵金属铂,它或者单独的或者与其它金属(Re、Ir或Sn)共同担载在多孔的酸性氧化铝(一般引入氯元素)上。重整催化剂是一种双功能催化剂。金属催化烷烃脱氢为烯烃,环烷烃脱氢为芳香烃,催化异构烯烃的加氢,对于加氢异构化和异构化反应也有贡献。酸性载体催化烯烃的异构化,环化和裂化。在双金属重整过程中加入金属铼作为助催化剂,以减少氢解副反应和金属在高温含氢环境下聚集烧结。双功能之间的相互作用通过烯烃而显现出来,烯烃是反应网络中的关键中间物。

尽管自行车、玻璃和冰,都是生活中很常见的东西,但是你可能想不到的是,科学家并没有完全理解它们。通过下面的讨论,你将会发现,现实远比我们想象的要复杂得多。

为什么自行车在行驶中不会倒下?

2011年,一个国际研究小组突然“投下一颗重磅”,声称尽管已经分析了150多年,但世界上还没有人真正弄懂为什么自行车在行驶中不会倒下。估计世界上许多自行车骑手听到这个消息后会立刻下车,并不可思议地盯着他们的自行车——多年来他们一直在做的事情,竟然是一件科学无法解释的现象!

不过准确地来说,科学家不知道的是,能使自行车保持稳定的最简单的充分必要条件是什么。自行车的研制,主要依靠的是不断试验,使自行车在行驶中更不易倒下。但是要想解释背后的原理就比较麻烦了。研究人员开始发现,要想解释自行车是如何工作的,数学上需要大约25个变量,例如自行车的前叉相对于路面的角度,质量的分布以及车轮的大小等等。

之后,研究人员把自行车保持稳定的条件变量简化为两个:一个叫“迹”的大小,指的是前轮触地的位置到前叉延长线与地面相交的位置之间的距离;另一个则是可以保持旋转的车轮直立的陀螺恢复力(一种令旋转物体恢复平衡的力,陀螺最为典型,故以陀螺命名)。

不过在2011年,那个国际研究小组不仅对这个理论重新分析了一遍,而且还把一辆自行车中的“迹”和陀螺恢复力弄歪,使得它在理论上无法保持稳定。但结果令人大感意外,这辆自行车在行驶中仍可以稳定地前行。

虽然这个问题没有得到解决,但是在2014年,来自美国康奈尔大学的研究人员已经发明出了一种无论怎么倾斜也不会倒下的车子。他们的发明看起来像是自行车与三轮车的合体,而外侧的两个车轮由一个弹簧来调节。如果弹簧完全松开,它跟普通自行车没什么区别,骑手可以通过倾斜和扭转车把来操控。如果弹簧完全绷紧,它就成了一辆三轮车,骑手只能通过扭转车把来操控。而当弹簧处在某个中间的临界点时,这辆车不管怎么倾斜也都倒不了,而且倾斜也不会影响车子的运动情况。另外,骑手试图扭转车把来转向时,却只会造成车子发生倾斜。结果是完全无法操控这辆车子,它只能沿着直线行驶。研究人员希望借此研究出骑手究竟是如何操控自行车并保存稳定的,并能研制出更易操控的自行车。

但这仍是一场艰难的研究。一些研究人员认为,要想理解自行车为什么不倒,不只是要考虑力学问题,也许还要考虑脑科学。人类能用很复杂的但却很直观的方式使得自行车保持稳定。例如在非常低的速度下,我们很容易就意识到,扭转车把没多大用处,相反我们会通过膝盖运动来操控自行车。

我们为什么会这么做?没人知道。自行车的谜团将会继续困扰我们。

玻璃是什么?

如果你去欧洲参观那些古老的大教堂的话,导游们常常会向你兜售这种观点:玻璃其实是液体,会慢慢地往下流,所以这些古老教堂上的玻璃都是上薄下厚的。

但这个观点是错的。玻璃并不是一种流动很缓慢的液体。研究表明,即使经过十几亿年,一块玻璃里也只不过是几个原子会发生移动。那么上薄下厚是怎么回事?事实上,中世纪的玻璃制造工艺还比较粗糙,没办法制造出厚度均匀的玻璃,于是工匠们会把玻璃厚的一边放在底部。

所以,玻璃就是固体了?对,但它却是一种极为特殊的固体。玻璃是一种无定形固体,或者叫做非晶态固体,因为它的微观结构不像晶体固体(例如金属、食盐和冰)那样是有规则的晶格排列,而是一种类似液体那样的不规则排列。另外,很多高分子化合物如聚苯乙烯等也是无定形固体。

但是,科学家并没有完全搞清楚玻璃的一切。例如,玻璃从液体转变为无定形固体的过程仍然令人摸不着头脑。

大多数材料从液体变为固体时,内部的分子会立刻进行重新排列。也就是说,处在液体时,分子可以自由地走动,然后在某个时刻分子会突然发现自己被困住了,于是一种有规则的晶格排列就形成了。

但是从炽热的液体转变为透明的固体的过程中,玻璃分子的运动状态并不是突然发生改变的,而是随着温度的下降而逐渐放缓的,最终形成的无定形固体仍具有类似液体那种不规则的排列,但却具有固体那种坚固的性质。换句话说,在玻璃中,我们遇到了一种奇怪的现象:类似液体那种不规则的排列被神奇地固定了下来。

但它究竟是怎么被固定下来的仍是一个悬而未决的问题。科学家们提出了许许多多理论来解释。

一种可能的原因是与能量有关。根据热力学定律,每一个分子集合总是趋向构成一种所含能量最低的排列。但在玻璃中,不同的分子集合却会构成不同的排列,最终会形成了一个不可调和的不规则排列。

尽管这种解释听起来不错,但是玻璃会形成不规则的排列,真的是因为这是一种能量最低的排列吗?一些科学家猜测,也许这是一种混乱程度最大的排列,因为一个系统的混乱程度总是趋向于达到最大(即热力学第二定律)。这也是一个合理的解释,尽管这个反而很难解释晶体固体中有规则的晶格排列是如何形成的。

而另一些科学家却认为,玻璃所形成的结构,也许是一种极为特殊的晶体。而且有一个证据能证明这个观点,那就是玻璃内有不断重复的几何结构。如果这种观点是正确的,那么玻璃可以真正称得上“晶”莹剔透。

但不管怎样,玻璃为什么是这样的,到今天也没有一个统一认可的解释。

冰为什么很滑?

花样滑冰选手可以在冰面上滑出优美的舞姿,但这里有一个很令科学家困惑的事情——冰为什么很滑?这个问题看似简单,但即使经过了一个多世纪的研究,科学家也没有找到一个明确的答案。

通常的解释是,冰之所以有很低的摩擦系数,是因为鞋与冰面之间有一层薄薄的水,这层水起到了润滑作用。因此,滑冰选手可以穿着滑冰鞋在冰面上自由地滑动,但是在木质地板上却无法滑动。

事实上早在1850年,英国物理学家迈克尔·法拉第就注意到了这层水。他曾向来自伦敦学会的听众们解释,挤压两块冰,两块冰之间的水层会迅速冻结,这样两块冰就冻在一起了。在很多年里,大家都认为冰面的这层水是因压力导致的,因为压力能使冰的熔点下降,促使冰发生融化。

但是,科学家经过计算后发现,即使一个体重超标的人只用一只滑冰鞋站在冰面,产生的压力也不足以明显改变冰的熔点,所以这种解释行不通。相反,一些科学家认为这应该是摩擦生热。当冰刀在冰面上运动时,产生的热量足以融化冰面。

你可能认为事情就是这样了。但是你可能会想起,即使你穿着滑冰鞋站着不动,你也可能滑倒,这说明摩擦并不是真正的原因。1996年,一些研究人员发现,当温度在-22℃以上时,冰的表面上始终有薄薄的一层永远不会凝固的水。所以说,并不是因为压力或者摩擦力产生的这层水,而是冰本身固有的性质。

不过,一位来自新加坡的研究人员认为,冰上的那层水并不是真正的液态水。他把这一层称为“超固体皮肤”,并认为,冰表面上的水分子之间的化学键被拉长了,但是与液态水不同的是,每一个化学键都没有断裂。而且,这种拉长的化学键会最终在表层与接触物之间产生一种静电斥力。这种静电斥力,类似于托起磁悬浮列车中的电磁力或托起气垫船的空气那样,能托起接触物,并大幅度地减少摩擦阻力。

尽管这位研究人员认为他已经完全解决了这个问题。但是,其他的研究人员对此并不信服。在2013年,一位来自日本的研究人员第一次直接观测了这一层结构,并认为这层应该是“准液体”,是冰融化为水时的一种中间状态。

那么,冰的表面究竟是什么?又是怎么来的?看来,这个问题暂时还得不到解决。