1.制取二氯乙烷最好的办法是

2.石油分馏可以得到什么?

3.裂解(化学过程)详细资料大全

4.请教一个问题,为什么说大多数含有苯环的物质有香味,但有极强的致癌性

5.石油的催化裂化为什么说是提高了产量和质量?

裂化汽油的主要成分是乙烷吗_裂化汽油的主要成分是乙烷吗

1 c,其他有负反应,得到产品不纯

2,环烷烃和烯烃不是同系物

3 不能,烷烃不溶于水。且没有亲水集团-OH -COOH

4 溶解,溶液为蓝色

无水硫酸铜白色粉末,变为蓝色粉末(五水合硫酸铜CuSO4.H2O),检验生成气体有H2O的重要方法之一

5

鉴别时要用Br2,Br2反应范围相对KMnO4略小些,不与醇类醚类醛类物质反应。

酸性高锰酸钾氧化性强,生成CO2气体,溶液褪色,如果有其他醛类物质也是同样的现象,所以无法用这个方法鉴别烯烃,醛类物质。(适用于烷烃,烯烃鉴别。)

烷烃烯烃炔烃是燃烧,放黑烟的是炔烃,烯烃略少

6 裂化汽油含有不饱和烯炔烃,与I2反应加成,无法萃取。

这个可以用来鉴别不饱和键

7

测定CO2 与H2O的质量,换算成C H的质量,相加后等于反应前质量的话,根据质量守恒定律,证明里面只含这两种成分,如果小于,证明里面含有O

8 应该是不互溶的,Na+亲水。乙酸乙酯不溶于水。所以可以用水来分液隔离

一般来说乙酸乙酯在盐中的溶解性相对来说更小些。Na2CO3盐析

制取二氯乙烷最好的办法是

1、石油分馏产物多属脂肪烃,有天然气、石油醚、汽油、煤油、柴油、石蜡、沥青,主要用在燃料和有机溶剂方面,C24以上的馏分还可用于机械润滑。

2、催化裂化是石油炼制过程之一,是在热和催化剂的作用下使重质油发生裂化反应,转变为裂化气、汽油和柴油等的过程。

3、原料用原油蒸馏(或其他石油炼制过程)所得的重质馏分油;或重质馏分油中混入少量渣油,经溶剂脱沥青后的脱沥青渣油;或全部用常压渣油或减压渣油。

4、在反应过程中由于不挥发的类碳物质沉积在催化剂上,缩合为焦炭,使催化剂活性下降,需要用空气烧去,以恢复催化活性,并提供裂化反应所需热量。

5、催化裂化是石油炼厂从重质油生产汽油的主要过程之一。所产汽油辛烷值高,安定性好,裂化气含丙烯、丁烯、异构烃多。

6、石油的裂解是使具有长链分子的烃断裂成各种短链的气态烃和少量液态烃,主要含有乙烯、丙烯、丁二烯等不饱和烃,还含有甲烷、乙烷、氢气、硫化氢等。裂解气里烯烃含量比较高。

扩展资料:

1、石油裂化是在一定的条件下,将相对分子质量较大、沸点较高的烃断裂为相对分子质量较小、沸点较低的烃的过程。单靠热的作用发生的裂化反应称为热裂化,在催化作用下进行的裂化,叫做催化裂化。

2、裂解是石油化工生产过程中,以比裂化更高的温度,使石油分馏产物中的长链烃断裂成乙烯、丙烯等短链烃的加工过程。

3、裂解是一种更深度的裂化。石油裂解的化学过程比较复杂,生成的裂解气是成分复杂的混合气体,除主要产品乙烯外,还有丙烯、异丁烯及甲烷、乙烷、丁烷、炔烃、硫化氢和碳的氧化物等。 裂解气经净化和分离,就可以得到所需纯度的乙烯、丙烯等基本有机化工原料。

4、石油分馏是将石油中几种不同沸点的混合物分离的一种方法,属于物理变化。石油是由超过8000种不同分子大小的碳氢化合物所组成的混合物。

5、石油在使用前必须经过加工处理,才能制成适合各种用途的石油产品。常见的处理方法为分馏法,利用分子大小不同,沸点不同的原理,将石油中的碳氢化合物予以分离,再以化学处理方法提高产品的价值。

6、催化剂工业中的一类重要产品,用于石油化工产品生产中的化学加工过程。

7、这类催化剂的品种繁多,按催化作用功能分, 主要有氧化催化剂、加氢催化剂、脱氢催化剂、氢甲酰化催化剂、聚合催化剂、水合催化剂、脱水催化剂、烷基化催化剂、异构化催化剂、歧化催化剂等,前五种用量较大。

参考资料:

百度百科-石油裂化

参考资料:

百度百科-石油分馏

参考资料:

百度百科-石油催化

石油分馏可以得到什么?

第一题:

1.制得的产物有二氯乙烷,但是必定有其他杂质,应该是1~6氯乙烷的混合物

2.正确,加成必定是两个氯加进去且无杂质

3.不反应

4.制出来的是一氯乙烷

第二题:

1.二甲苯(H3C-C6H4-CH3)会与溴发生取代反应;

2.正确,溴在汽油中的溶解度比水大得多且不溶于水,不与水反应;

3.烧碱会与溴反应 2NaOH+Br2=NaBr+NaBrO+H2O(类似与氯气跟烧碱反应)

4.酒精可溶于水

裂解(化学过程)详细资料大全

石油分馏可得到什么?干馏呢? 20分

石油分馏工业上先将石油加热至400℃~500℃之间,使其变成蒸气后输进分馏塔。在分馏塔中,位置愈高,温度愈低。石油蒸气在上升途中会逐步液化,冷却及凝结成液体馏份。分子较小、沸点较低的气态馏份则慢慢地沿塔上升,在塔的高层凝结,例如燃料气(Fuel Gas)、液化石油气(LPG.)、轻油(Naphtha)、煤油(Kerosene) 等。分子较大、沸点较高的液态馏份在塔底凝结,例如柴油(Diesel)、润滑油及蜡等。在塔底留下的黏滞残余物为沥青及重油(Hey Oil),可作为焦化和制取沥青的原料或作为锅炉燃料。不同馏份在各层收集起来,经过导管输离分馏塔。这些分馏产物便是石油化学原料,可再制成许多的化学品。

石油产品包含粗石油、轻油、煤油及重油等。

粗石油为分馏温度较低、分子较小的成分,可做为燃料及汽油,如液化天然气(主要成份为甲烷,含少量乙烷、丙烷、丁烷、乙烯)或液化石油气(主要成份为丙烷、丁烷、丙烯、乙烯)等,也可作为溶剂,如己烷等。

轻油又称为石油脑,是沸点高于汽油而低于煤油的分馏混合物,可分为轻石油脑及重石油脑。石油脑经脱醇酸化反应后,可作为汽油及航空燃料油使用,轻石油脑可经媒组反应产生高辛烷质的汽油或石油化学原料,如苯、甲苯、二甲苯等,也可经裂解反应产生乙烯、丙烯、丁烯、戊烷、芳香弧及碳烟,或经由加氢裂解反应,生产汽油及液化石油气。

重油一般指燃料油或燃料油与柴油混合而成的中间油料。直接产品可概分为渔船用油及锅炉用燃油两种。加工处理后则可生产润滑油、柏油、石油焦、汽油、液化石油气及丙烯等产品。

石油没有干馏操作。干馏是煤的加工过程

什么是石油分馏?石油分馏能得到哪些主要产品?它们有何用途

石油分馏是将石油分离几种不同沸点的混合物的一种方法,属于物理变化。

石油分馏产物多属脂肪烃,有天然气、石油醚、汽油、煤油、柴油、石蜡、沥青,主要用在燃料和有机溶剂方面,C24以上的馏分还可用于机械润滑。

石油经过分馏以后得到的主要产物有哪些

在石油化工生产过程里,常用石油分馏产品(包括石油气)作原料,用比裂化更高的温度(700~800℃,有时甚至高达1000℃以上),使具有长链分子的烃断裂成各种短链的气态烃和少量液态烃,以提供有机化工原料.工业上把这种方法叫做石油的裂解.所以说裂解就是深度裂化,以获得短链不饱和烃为主要成分的石油加工过程.石油裂解的化学过程是比较复杂的,生成的裂解气是一种复杂的混合气体,它除了主要含有乙烯、丙烯、丁二烯等不饱和烃外,还含有甲烷、乙烷、氢气、硫化氢等.裂解气里烯烃含量比较高.因此,常把乙烯的产量作为衡量石油化工发展水平的标志.把裂解产物进行分离,就可以得到所需的多种原料.这些原料在合成纤维工业、塑料工业、橡胶工业等方面得到广泛应用.

裂化汽油说明:由石油重质馏分经裂化而得的汽油.含有烯烃、芳香烃和少量二烯烃.化学稳定性较差.但辛烷值较高,经热裂化而得的约为55~75,经催化裂化而得的约为80~95.可单独用作车用汽油,也可与直馏汽油等掺合,或多种裂化汽油相互掺合而成航空汽油等.

裂解汽油又称热解汽油.以轻烃、石脑油、柴油甚至减压蜡油为原料,在水蒸气存在下高温裂解制取乙烯的过程中,生成含碳五烃类以上的液体副产品,经分馏出干点为205℃的液体称为裂解汽油.由于此种汽油富含芳烃,经过加氢精制后可作为高辛烷值汽油组分或用于萃取苯、甲苯、乙苯、二甲苯等化工原料.

能使溴的四氯化碳溶液褪色的是裂化汽油.

满意请纳!

石油分馏获得什么物质工业上,通过石油分馏可直接得到

石油常压分馏产物:液化石油气、汽油、煤油、柴油、重油.减压分馏过程的产物:重柴油、润滑油、凡士林、石蜡、沥青.石油裂解的化学过程是比较复杂的,生成的裂解气是一种复杂的混合气体,它除了主要含有乙烯、丙烯、丁二烯等不饱和烃外,还含有甲烷、乙烷、氢气、硫化氢等.故选C.

石油分馏获得的产物

石油气 汽油 煤油 柴油 沥青等

请教一个问题,为什么说大多数含有苯环的物质有香味,但有极强的致癌性

裂解又称裂化系指有机化合物受热分解和缩合生成相对分子质量不同的产品的过程。裂解也可称为热裂解或热解。按照是否用催化剂,可分为热裂化和催化裂化;按照存在的介质,又可分为加氢裂化、氧化裂化、加氨裂化和蒸气裂化等。

在工业上烃类热裂化最为重要,是生产低级烯烃(乙烯、丙烯、丁烯和丁二烯)的主要方法。相应的生产装置已成为石油化学工业的基础。氧化裂化是由甲烷制乙炔气的主要方法,也是由重质烃制取混合烯烃、汽油、柴油和合成气的重要方法;加氢裂化除用于由重质油制取轻质燃料油外,还可由煤制造人造天然气;由有机酸酯经裂解生成酸、酮和醇,由酯类加氨裂化生成腈,例如,由a-及B- 萘甲酸乙酯经加氨裂解生成a一及B- 萘腈等;由卤烷经热裂解可制得卤代烯烃。例如,由二氯乙烷裂解制氯乙烯。

基本介绍 中文名 :裂解 外文名 :pyrolysis 拼音 :liè jiě 专业 :化学|能源科学技术|生物学 解释 :受热将一种样品变成另外几种物质 也称 :热裂解或热解 释义,工业用途,主要类型, 释义 pyrolysis 石油化工生产过程中,以比裂化更高的温度(700℃~800℃,有时甚至高达1000℃以上),使石油分馏产物(包括石油气)中的长链烃断裂成乙烯、丙烯等短链烃的加工过程。 工业用途 目前主要用石脑油、煤油、柴油为原料并向重油发展。在裂解过程中,同时伴随缩合、环化和脱氢等反应。由于所发生的反应很复杂,通常把反应分成两个阶段来看。第一阶段,原料变成的目的产物为乙烯、丙烯,这种反应称为一次反应。在第二阶段,一次反应生成的乙烯、丙烯继续反应转化为炔烃、二烯烃、芳烃、环烷烃,甚至最终转化为氢气和焦炭,这种反应称为二次反应。所以裂解产物往往是多种组分的混合物。影响裂解的基本因素首先是温度和反应的持续时间,还有是烃原料的种类。化工生产中用热裂解的方法,在裂解炉(管式炉或蓄热炉)中,把石油烃变成小分子的烯烃、炔烃和芳香烃,如乙烯、丙烯、丁二烯、乙炔、苯和甲苯等。 裂解 (英语:Pyrolysis),或称 热解 热裂 热裂解 高温裂解 ,指无氧气存在下,有机物质的高温分解反应。此类反应常用于分析复杂化合物的结构,如利用裂解气相色谱-质谱法。 工业上,裂解反应可用于合成化工产品,比如二氯乙烯裂解可生成聚氯乙烯,即PVC。此外,也可用于将生物质能或废料转化为低害或可以利用的物质,例如用此法来制取合成气。 裂解与干馏及烷烃的裂化反应有相似之处,同属于热分解反应。如果裂解的温度再升高,则会发生碳化反应,所有的反应物都会转变为碳。 主要类型 裂解又可分为以下几种主要类型: 无水裂解:在古代时无水裂解用于将木材转化为木炭,现在可用该法从生物质能或塑胶制取液体燃料。 含水热解:如油的蒸汽裂化及由有机废料的热解聚制取轻质原油。 真空裂解 此外,由于着火时氧气供应通常较少,因而火灾时发生的反应与裂解反应类似。这也是目前研究裂解反应机理和性质的重要原因。

石油的催化裂化为什么说是提高了产量和质量?

于苯的挥发性大,暴露于空气中很容易扩散。人和动物吸入或皮肤接触大量苯进入体内,会引起急性和慢性苯中毒。有研究报告表明,引起苯中毒的部分原因是由于在体内苯生成了苯酚。

苯对中枢神经系统产生麻痹作用,引起急性中毒。重者会出现头痛、恶心、呕吐、神志模糊、知觉丧失、昏迷、抽搐等,严重者会因为中枢系统麻痹而死亡。少量苯也能使人产生睡意、头昏、心率加快、头痛、颤抖、意识混乱、神志不清等现象。摄入含苯过多的食物会导致呕吐、胃痛、头昏、失眠、抽搐、心率加快等症状,甚至死亡。吸入20000ppm的苯蒸气5-10分钟便会有致命危险。

长期接触苯会对血液造成极大伤害,引起慢性中毒。引起神经衰弱综合症。苯可以损害骨髓,使红血球、白细胞、血小板数量减少,并使染色体畸变,从而导致白血病,甚至出现再生障碍性贫血。苯可以导致大量出血,从而抑制免疫系统的功用,使疾病有机可乘。有研究报告指出,苯在体内的潜伏期可长达12-15年。

妇女吸入过量苯后,会导致月经不调达数月,卵巢会缩小。对胎儿发育和对男性生殖力的影响尚未明了。孕期动物吸入苯后,会导致幼体的重量不足、骨骼延迟发育、骨髓损害。

对皮肤、粘膜有刺激作用。国际癌症研究中心(IARC)已经确认为致癌物。

接触限值:

* 中国 MAC 40 mg/m3(皮)

* 美国ACGIH 10ppm, 32mg/m3 TWA: OSHA 1ppm, 3.2 mg/m3

毒性:

* LD50: 3306mg/kg(大鼠经口);48mg/kg(小鼠经皮)

* LC50: 10000ppm 7小时(大鼠吸入)

当然,由于每个人的健康状况和接触条件不同,对苯的敏感程度也不相同。嗅出苯的气味时,它的浓度大概是1.5ppm,这时就应该注意到中毒的危险。在检查时,通过尿和血液的检查可以很容易查出苯的中毒程度。

维基百科,自由的百科全书

跳转到: 导航, 搜索

IUPAC中文命名

常规

分子式 C6H6

SMILES C1=CC=CC=C1

分子量 78.11 g/mol

外观 无色透明易挥发液体

气味 有强烈芳香气味。12ppm浓度时可检测到油漆稀释剂气味

CAS号 71-43-2

RTECS号 CY1400000

IMDG规则页码 3185

UN编号 1114

性质

STP下的密度 0.8786 g/cm3

溶解度 0.18 g/ 100 ml 水

熔点 278.65 K (5.5 ℃)

沸点 353.25 K (80.1 ℃)

相态

三相点 278.5 ± 0.6 K

临界点 289.5℃

4.92MPa

熔解热

(ΔfusH) 9.84 kJ/mol

汽化热

(ΔvapH) 44.3 kJ/mol

燃烧热 3264.4 kJ/mol

危险性

闪点 -10.11℃(闭杯)

自燃 562.22℃

爆炸极限 1.2 - 8.0 %

摄取 可引起急性中毒,麻痹中枢神经,需要充分漱口,喝水,尽快洗胃。

吸入 可导致呼吸困难。严重者可能导致呼吸及心跳停止。

皮肤 变干燥,脱屑,皴裂,有的可能发生过敏性

眼睛 有刺激性。需用大量清水冲洗

处理方式

* 危险性:

o 遇热、明火易燃烧、爆炸。

* 人身保护:

o 防护手套,防护服,浓度过高须配带防毒面具

* 稳定性:

o 能与氧化剂强烈反应。不能与乙硼烷共存。

* 储存:

o 阴凉,通风。远离火种、热源。防止阳光直射。密封储存。防止静电

液体性质

标准生成焓

(ΔfH0液) 48.95 ± 0.54 kJ/mol

标准熵

(S0液) 173.26 J/mol·K

热容

(Cp) 135.69 J/mol·K (298.15 K)

若非注明,所有数据都依从国际单位制和来自标准温度和压力条件下。 参考和免责条款

苯(C6H6)在常温下为一种无色、有甜味的透明液体,并具有强烈的芳香气味。苯可燃,有毒,也是一种致癌物质。

化学上,苯是一种碳氢化合物也是最简单的芳烃。它难溶于水,易溶于有机溶剂,本身也可作为有机溶剂。苯是一种石油化工基本原料。苯的产量和生产的技术水平是一个国家石油化工发展水平的标志之一。苯具有的环系叫苯环,是最简单的芳环。苯分子去掉一个氢以后的结构叫苯基,用Ph表示。因此苯也可表示为PhH。

目录

[隐藏]

* 1 发现

* 2 结构

* 3 物理性质

* 4 化学性质

o 4.1 取代反应

+ 4.1.1 卤代反应

+ 4.1.2 硝化反应

+ 4.1.3 磺化反应

+ 4.1.4 烷基化反应

o 4.2 加成反应

o 4.3 氧化反应

o 4.4 其他反应

* 5 制备

o 5.1 从煤焦油中提取

o 5.2 从石油中提取

+ 5.2.1 催化重整

+ 5.2.2 蒸汽裂解

o 5.3 芳烃分离

o 5.4 甲苯脱烷基化

+ 5.4.1 甲苯催化加氢脱烷基化

+ 5.4.2 甲苯热脱烷基化

o 5.5 甲苯歧化和烷基转移

o 5.6 其他方法

* 6 分析测试方法

* 7 安全

o 7.1 毒性

o 7.2 可燃性

* 8 工业用途

* 9 苯的异构体

* 10 苯的衍生物

o 10.1 取代苯

o 10.2 多环芳烃

* 11 参看

* 12 参考文献

* 13 外部链接

[编辑]

发现

凯库勒的摆动双键

放大

凯库勒的摆动双键

苯最早是在18世纪初研究将煤气作为照明用气时合成出来的。1803年-1819年G. T. Accum用同样方法制出了许多产品,其中一些样品用现代的分析方法检测出有少量的苯。然而,一般认为苯是在1825年由麦可·法拉第发现的。他从鱼油等类似物质的热裂解产品中分离出了较高纯度的苯,称之为“氢的重碳化物”(Bicarburet of hydrogen)。并且测定了苯的一些物理性质和它的化学组成,阐述了苯分子的碳氢比。

1833年,Milscherlich确定了苯分子中6个碳和6个氢原子的经验式(C6H6)。弗里德里希·凯库勒于1865年提出了苯环单、双键交替排列、无限共轭的结构,即现在所谓“凯库勒式”。又对这一结构作出解释说环中双键位置不是固定的,可以迅速移动,所以造成6个碳等价。他通过对苯的一氯代物、二氯代物种类的研究,发现苯是环形结构,每个碳连接一个氢。也有人提出了其他的设想:

詹姆斯·杜瓦则归纳出不同结构;以其命名的杜瓦苯现已被证实是与苯不同的另外一种物质,可由苯经光照得到。

1845年德国化学家霍夫曼从煤焦油的轻馏分中发现了苯,他的学生C. Mansfield随后进行了加工提纯。后来他又发明了结晶法精制苯。他还进行工业应用的研究,开创了苯的加工利用途径。大约从1865年起开始了苯的工业生产。最初是从煤焦油中回收。随着它的用途的扩大,产量不断上升,到1930年已经成为世界十大吨位产品之一。

[编辑]

结构

苯具有的苯环结构导致它有特殊的芳香性。苯环是最简单的芳环,由六个碳原子构成一个六元环,每个碳原子接一个基团,苯的6个基团都是氢原子。

6个p轨道形成离域大∏键的电子云

放大

6个p轨道形成离域大∏键的电子云

碳数为4n+2(n是自然数),且具有单、双键交替排列结构的环烯烃称为轮烯,苯就是[6]-轮烯。

苯分子是平面分子,12个原子处于同一平面上,6个碳和6个氢是均等的,C-H键长为1.08?,C-C键长为1.40?,此数值介于单双键长之间。分子中所有键角均为120°,说明碳原子都取sp2杂化。这样每个碳原子还剩余一个p轨道垂直于分子平面,每个轨道上有一个电子。于是6个轨道重叠形成离域大∏键,现在认为这是苯环非常稳定的原因,也直接导致了苯环的芳香性。

[编辑]

物理性质

苯的沸点为80.1℃,熔点为5.5℃,在常温下是一种无色、有芳香气味的透明液体,易挥发。苯比水密度低,密度为0.88g/ml,但其分子质量比水重,。苯难溶于水,1升水中最多溶解1.7g苯;但苯是一种良好的有机溶剂,溶解有机分子和一些非极性的无机分子的能力很强。

苯能与水生成恒沸物,沸点为69.25℃,含苯91.2%。因此,在有水生成的反应中常加苯蒸馏,以将水带出。

在10-1500mmHg之间的饱和蒸气压可以根据安托万方程(antoine)计算:

\lg P = A - {B \over C + t}

其中:P 单位为 mmHg, t 单位为 ℃, A = 6.91210, B = 1214.645, C = 221.205

[编辑]

化学性质

苯参加的化学反应大致有3种:一种是其他基团和苯环上的氢原子之间发生的取代反应;一种是发生在C-C双键上的加成反应;一种是苯环的断裂。

[编辑]

取代反应

苯环上的氢原子在一定条件下可以被卤素、硝基、磺酸基、烃基等取代,生成相应的衍生物。由于取代基的不同以及氢原子位置的不同、数量不同,可以生成不同数量和结构的同分异构体。

苯环的电子云密度较大,所以发生在苯环上的取代反应大都是亲电取代反应。亲电取代反应是芳环有代表性的反应。苯的取代物在进行亲电取代时,第二个取代基的位置与原先取代基的种类有关。

[编辑]

卤代反应

苯的卤代反应的通式可以写成:

PhH + X_2 \to PhX + HX

反应过程中,卤素分子在苯和催化剂的共同作用下异裂,X+进攻苯环,X-与催化剂结合。

以溴为例:反应需要加入铁粉,铁在溴作用下先生成三溴化铁。

FeBr_3 + Br^- \to FeBr_4^-

PhH + Br^+ + FeBr_4^- \to PhBr + FeBr_3 + HBr

在工业上,卤代苯中以氯和溴的取代物最为重要。

[编辑]

硝化反应

苯和硝酸在浓硫酸作催化剂的条件下可生成硝基苯:

PhH + HONO_2 \to PhNO_2 + H_2O

硝化反应是一个强烈的放热反应,很容易生成一取代物,但是进一步反应速度较慢。

[编辑]

磺化反应

用浓硫酸或者发烟硫酸在较高温度下可以将苯磺化成苯磺酸。

H_2SO_4 + PhH \to PhSO_3H + H_2O

苯环上引入一个磺酸基后反应能力下降,不易进一步磺化,需要更高的温度才能引入第二、第三个磺酸基。这说明硝基、磺酸基都是钝化基团,即妨碍再次亲电取代进行的基团。

[编辑]

烷基化反应

在AlCl3催化下苯环上的氢原子可以被烷基(烯烃)取代生成烷基苯,这种反应称为烷基化反应,又称为傅-克烷基化反应。例如与乙烯烷基化生成乙苯:

PhH + C_2H_4 \to Ph\!-\!C_2H_5

在反应过程中,R基可能会发生重排:如1-氯丙烷与苯反应生成异丙苯,这是由于自由基总是趋向稳定的构型。

[编辑]

加成反应

苯环虽然很稳定,但是在一定条件下也能够发生双键的加成反应。通常经过催化加氢,镍作催化剂,苯可以生成环己烷。

C_6H_6 + 3H_2 \to C_6H_{12}

此外由苯生成六氯环己烷(六六六)的反应可以在紫外线照射的条件下,由苯和氯气加成而得。

[编辑]

氧化反应

苯和其他的烃一样,都能燃烧。当氧气充足时,产物为二氧化碳和水。

2C_6H_6 + 15O_2 \to 12CO_2 + 6H_2O

但是在一般条件下,苯不能被强氧化剂所氧化。但是在氧化钼等催化剂存在下,与空气中的氧反应,苯可以选择性的氧化成顺丁烯二酸酐。这是屈指可数的几种能破坏苯的六元碳环系的反应之一。(马来酸酐是五元杂环。)

2C_6H_6 + 9O_2 \to 2C_4H_2O_3 + 4CO_2 + 4H_2O

这是一个强烈的放热反应。

[编辑]

其他反应

苯在高温下,用铁、铜、镍做催化剂,可以发生缩合反应生成联苯。和甲醛及次氯酸在氯化锌存在下可生成氯甲基苯。和乙基钠等烷基金属化物反应可生成苯基金属化物。在四氢呋喃中氯苯或溴苯和镁反应可生成苯基格林尼亚试剂。

[编辑]

制备

苯可以由含碳量高的物质不完全燃烧获得。自然界中,火山爆发和森林火险都能生成苯。苯也存在于香烟的烟中。

直至二战,苯还是一种钢铁工业焦化过程中的副产物。这种方法只能从1吨煤中提取出1千克苯。1950年代后,随着工业上,尤其是日益发展的塑料工业对苯的需求增多,由石油生产苯的过程应运而生。现在全球大部分的苯来源于石油化工。工业上生产苯最重要的三种过程是催化重整、甲苯加氢脱烷基化和蒸汽裂化。

[编辑]

从煤焦油中提取

在煤炼焦过程中生成的轻焦油含有大量的苯。这是最初生产苯的方法。将生成的煤焦油和煤气一起通过洗涤和吸收设备,用高沸点的煤焦油作为洗涤和吸收剂回收煤气中的煤焦油,蒸馏后得到粗苯和其他高沸点馏分。粗苯经过精制可得到工业级苯。这种方法得到的苯纯度比较低,而且环境污染严重,工艺比较落后。

[编辑]

从石油中提取

在原油中含有少量的苯,从石油产品中提取苯是最广泛使用的制备方法。

[编辑]

催化重整

重整这里指使脂肪烃成环、脱氢形成芳香烃的过程。这是从第二次世界大战期间发展形成的工艺。

在500-525°C、8-50个大气压下,各种沸点在60-200°C之间的脂肪烃,经铂 - 铼催化剂,通过脱氢、环化转化为苯和其他芳香烃。从混合物中萃取出芳香烃产物后,再经蒸馏即分出苯。也可以将这些馏分用作高辛烷值汽油。

[编辑]

蒸汽裂解

蒸汽裂解是由乙烷,丙烷或丁烷等低分子烷烃以及石脑油,重柴油等石油组份生产烯烃的一种过程。其副产物之一裂解汽油富含苯,可以分馏出苯及其他各种成分。裂解汽油也可以与其他烃类混合作为汽油的添加剂。

裂解汽油中苯大约有40-60%,同时还含有二烯烃以及苯乙烯等其他不饱和组份,这些杂质在贮存过程中易进一步反应生成高分子胶质。所以要先经过加氢处理过程来除去裂解汽油中的这些杂质和硫化物,然后再进行适当的分离得到苯产品。

[编辑]

芳烃分离

从不同方法得到的含苯馏分,其组分非常复杂,用普通的分离方法很难见效,一般用溶剂进行液-液萃取或者萃取蒸馏的方法进行芳烃分离,然后再用一般的分离方法分离苯、甲苯、二甲苯。根据用的溶剂和技术的不同又有多种分离方法。

* Udex法:由美国道化学公司和UOP公司在1950年联合开发,最初用二乙二醇醚作溶剂,后来改进为三乙二醇醚和四乙二醇醚作溶剂,过程用多段升液通道(multouocomer)萃取器。苯的收率为100%。

* Suifolane法:荷兰壳牌公司开发,专利为UOP公司所有。溶剂用环丁砜,使用转盘萃取塔进行萃取,产品需经白土处理。苯的收率为99.9%。

* Arosolvan法:由联邦德国的鲁奇公司在1962年开发。溶剂为N-甲基吡咯烷酮(NMP),为了提高收率,有时还加入10-20%的乙二醇醚。用特殊设计的Mechnes萃取器,苯的收率为99.9%。

* IFP法:由法国石油化学研究院在1967年开发。用不含水的二甲亚砜作溶剂,并用丁烷进行反萃取,过程用转盘塔。苯的收率为99.9%。

* Formex法:为意大利SNAM公司和LRSR石油加工部在11年开发。吗啉或N-甲酰吗啉作溶剂,用转盘塔。芳烃总收率98.8%,其中苯的收率为100%。

[编辑]

甲苯脱烷基化

甲苯脱烷基制备苯,可以用催化加氢脱烷基化,或是不用催化剂的热脱烷基。原料可以用甲苯、及其和二甲苯的混合物,或者含有苯及其他烷基芳烃和非芳烃的馏分。

[编辑]

甲苯催化加氢脱烷基化

用铬,钼或氧化铂等作催化剂,500-600°C高温和40-60个大气压的条件下,甲苯与氢气混合可以生成苯,这一过程称为加氢脱烷基化作用。如果温度更高,则可以省去催化剂。反应按照以下方程式进行:

Ph\!-CH_3 + H_2 \to Ph\!-H + CH_4

根据所用催化剂和工艺条件的不同又有多种工艺方法:

* Hydeal法:由Ashiand & refing 和UOP公司在1961年开发。原料可以是重整油、加氢裂解汽油、甲苯、碳6-碳8混合芳烃、脱烷基煤焦油等。催化剂为氧化铝-氧化铬,反应温度600-650℃,压力3.43-3.92MPa。苯的理论收率为98%,纯度可达99.98%以上,质量优于Udex法生产的苯。

* Detol法:Houdry公司开发。用氧化铝和氧化镁做催化剂,反应温度540-650℃,反应压力0.69-5.4MPa,原料主要是碳7-碳9芳烃。苯的理论收率为%,纯度可达99.%。

* Pyrotol法:Air products and chemicals公司和Houdry公司开发。适用于从乙烯副产裂解汽油中制苯。催化剂为氧化铝-氧化铬,反应温度600-650℃,压力0.49-5.4MPa。

* Bextol法:壳牌公司开发。

* BA法:BA公司开发。

* Unidak法:UOP公司开发。

[编辑]

甲苯热脱烷基化

甲苯在高温氢气流下可以不用催化剂进行脱烷基制取苯。反应为放热反应,针对遇到的不同问题,开发出了多种工艺过程。

* MHC加氢脱烷基过程:由日本三菱石油化学公司和千代田建设公司在1967年开发。原料可以用甲苯等纯烷基苯,含非芳烃30%以内的芳烃馏分。操作温度500-800℃,操作压力0.98MPa,氢/烃比为1-10。过程选择性-99%(mol),产品纯度99.99%。

* HDA加氢脱烷基过程:由美国Hydrocarbon Research和Atlantic Richfield公司在1962年开发。原料用甲苯,二甲苯,加氢裂解汽油,重整油。从反应器不同部位同如氢气控制反应温度,反应温度600-760℃,压力3.43-6.85MPa,氢/烃比为1-5,停留时间5-30秒。选择性95%,收率96-100%。

* Sun过程:由Sun Oil公司开发

* THD过程:Gulf Research and Development公司开发

* Monsanto过程:孟山都公司开发

[编辑]

甲苯歧化和烷基转移

随着二甲苯用量的上升,在1960年代末相继开发出了可以同时增产二甲苯的甲苯歧化和烷基转移技术,主要反应为:

甲苯歧化和烷基转移反应

这个反应为可逆反应,根据使用催化剂、工艺条件、原料的不同而有不同的工艺过程。

* LTD液相甲苯岐化过程:美国美孚化学公司在11年开发,使用非金属沸石或分子筛催化剂,反应温度260-315℃,反应器用液相绝热固定床,原料为甲苯,转化率99%以上

* Tatoray过程:日本东丽公司和UOP公司1969年开发,以甲苯和混合碳9芳烃为原料,催化剂为丝光沸石,反应温度350-530℃,压力2.94MPa,氢/烃比5-12,用绝热固定床反应器,单程转化率40%以上,收率95%以上,选择性90%,产品为苯和二甲苯混合物。

* Xylene plas过程:由美国Atlantic Richfield公司和Engelhard公司开发.使用稀土Y型分子筛做催化剂,反应器为气相移动床,反应温度471-491℃,常压。

* TOLD过程:日本三菱瓦斯化学公司1968年开发,氢氟酸-氟化硼催化剂,反应温度60-120℃,低压液相。有一定腐蚀性。

[编辑]

其他方法

此外,苯还可以通过乙炔加成得到。反应方程式如下:

\rm 3CH\!\equiv\!CH \longrightarrow C_6H_6

[编辑]

分析测试方法

气相色谱和液相色谱可以检测各种产品中苯的含量。苯的纯度的测定一般使用冰点法。

对空气中微量苯的检测,可以用甲基硅油等有挥发性的有机溶剂或者低分子量的聚合物吸收,然后通过色谱进行分析;或者用比色法分析;也可以将含有苯的空气深度冷冻,将苯冷冻下来,然后把硫酸铁和过氧化氢溶液加入得到黄褐色或黑色沉淀,再用硝酸溶解,然后通过比色法分析。或者直接用硝酸吸收空气中的苯,硝化成间二硝基苯,然后用二氯化钛溶液滴定,或者用间二甲苯配制的甲乙酮碱溶液比色定量。

[编辑]

安全

[编辑]

毒性

参看苯中毒

由于苯的挥发性大,暴露于空气中很容易扩散。人和动物吸入或皮肤接触大量苯进入体内,会引起急性和慢性苯中毒。有研究报告表明,引起苯中毒的部分原因是由于在体内苯生成了苯酚。

苯对中枢神经系统产生麻痹作用,引起急性中毒。重者会出现头痛、恶心、呕吐、神志模糊、知觉丧失、昏迷、抽搐等,严重者会因为中枢系统麻痹而死亡。少量苯也能使人产生睡意、头昏、心率加快、头痛、颤抖、意识混乱、神志不清等现象。摄入含苯过多的食物会导致呕吐、胃痛、头昏、失眠、抽搐、心率加快等症状,甚至死亡。吸入20000ppm的苯蒸气5-10分钟便会有致命危险。

长期接触苯会对血液造成极大伤害,引起慢性中毒。引起神经衰弱综合症。苯可以损害骨髓,使红血球、白细胞、血小板数量减少,并使染色体畸变,从而导致白血病,甚至出现再生障碍性贫血。苯可以导致大量出血,从而抑制免疫系统的功用,使疾病有机可乘。有研究报告指出,苯在体内的潜伏期可长达12-15年。

妇女吸入过量苯后,会导致月经不调达数月,卵巢会缩小。对胎儿发育和对男性生殖力的影响尚未明了。孕期动物吸入苯后,会导致幼体的重量不足、骨骼延迟发育、骨髓损害。

对皮肤、粘膜有刺激作用。国际癌症研究中心(IARC)已经确认为致癌物。

接触限值:

* 中国 MAC 40 mg/m3(皮)

* 美国ACGIH 10ppm, 32mg/m3 TWA: OSHA 1ppm, 3.2 mg/m3

毒性:

* LD50: 3306mg/kg(大鼠经口);48mg/kg(小鼠经皮)

* LC50: 10000ppm 7小时(大鼠吸入)

当然,由于每个人的健康状况和接触条件不同,对苯的敏感程度也不相同。嗅出苯的气味时,它的浓度大概是1.5ppm,这时就应该注意到中毒的危险。在检查时,通过尿和血液的检查可以很容易查出苯的中毒程度。

[编辑]

可燃性

由于苯可以在空气中燃烧,因此它一般都被定为危险化学品。例如在中华人民共和国《危险货物品名表》(GB 12268-90)中,苯属第三类危险货物易燃液体中的中闪点液体。而且由于它的挥发性,可能造成蒸气局部聚集,因此在贮存,运输时一般都要求远离火源和热源,防止静电。

由于苯的冰点比较高,在寒冷天气中运输会有困难,但是加热熔化会带来危险性。

[编辑]

工业用途

早在1920年代,苯就已是工业上一种常用的溶剂,主要用于金属脱脂。由于苯有毒,人体能直接接触溶剂的生产过程现已不用苯作溶剂。

苯有减轻爆震的作用而能作为汽油添加剂。在1950年代四乙基铅开始使用以前,所有的抗爆剂都是苯。然而现在随着含铅汽油的淡出,苯又被重新起用。由于苯对人体有不利影响,对地下水质也有污染,欧美国家限定汽油中苯的含量不得超过1%。

苯在工业上最重要的用途是做化工原料。苯可以合成一系列苯的衍生物:

* 苯与乙烯生成乙苯,后者可以用来生产制塑料的苯乙烯

* 与丙烯生成异丙苯,后者可以经异丙苯法来生产丙酮与制树脂和粘合剂的苯酚

* 制尼龙的环己烷

* 合成顺丁烯二酸酐

* 用于制作苯胺的硝基苯

* 多用于农药的各种氯苯

* 合成用于生产洗涤剂和添加剂的各种烷基苯

此外还可以用来合成氢醌,蒽醌等化工产品。

[编辑]

苯的异构体

* 杜瓦苯

* 盆苯

* 休克尔苯

* 棱柱烷

[编辑]

苯的衍生物

下面是一些有代表性的苯的取代物或与苯结构相似的物质。

[编辑]

取代苯

烃基取代

* 甲苯

* 二甲苯

* 苯乙烯

含氧基团取代

* 苯酚

* 苯甲酸

* 苯乙酮

* 苯醌

卤代

* 氯苯

* 溴苯

[编辑]

多环芳烃

* 联苯

* 三联苯

* 稠环芳烃

o 萘

o 蒽

o 菲

o 茚

o 芴

o 苊

o 薁

[编辑]

参看

* 芳香性

* BTX

* π键

* 粗苯

[编辑]

参考文献

1. 中国石化北京化工研究院,《常用危险化学品安全数据卡》(内部材料),2004年

2. 魏文德主编,《有机化工原料大全》第三卷,化学工业出版社,1994年,p358-381, ISBN 7-5025-0684-5

3. (英)汉考克(Hancock,E.G.)主编,《苯及其工业衍生物》,化学工业出版社,1982.11

4. US 3863310 (15).

5. FR 1549188 (12).

6. JP 45-24933 (10).

7. GB 1241316 (15).

8. US 3879602 (1983).

9. Wilson, L. D. "Health Hazards from aromatic Hydrocarbons", Des Plaines, III., Universal Oil Products Company, 1962

[编辑]

外部链接

维基词典

您可以在维基词典中查找此百科条目的相关解释:

维基共享图标

您可以在维基共享中查找与此条目相关的多媒体:

* Benzene Material Safety Data Sheet

* Chemistry WebBook上的化学性质数据

* 职业性苯中毒诊断标准——GBZ68-2002

* 化工世界苯网——提供苯的市场行情

取自"://wikipedia.cnblog.org/wiki/%E8%8B%AF"

页面分类: 芳香烃 | 芳香族化合物 | 致癌物质

热裂化反应很复杂。每当重质油加热到450℃以上时,其大分子分裂为小分子。同时,还有少量叠合(见烯烃叠合)、缩合发生,使一部分分子转变为较大的分子,热裂化是按自由基反应机理进行的。在400~600℃,大分子烷烃分裂为小分子的烷烃和烯烃;环烷烃分裂为小分子或脱氢转化成芳烃,其侧链较易断裂;芳烃的环很难分裂,主要发生侧链断裂。热裂化气体的特点是甲烷、乙烷-乙烯组分较多;而催化裂化气体中丙烷-丙烯组分、丁烷-丁烯组分较多。

工业装置类型主要有双炉热裂化和减粘热裂化两种。前者的原料转化率(轻质油收率)较高,大于45%,目的是从各种重质油制取汽油、柴油;后者的转化率较低(20%~25%),目的是降低减压渣油的粘度和凝点,以提高燃料油质量,双炉热裂化汽油的辛烷值和安定性不如催化裂化汽油,目前已不发展;减粘热裂化在石油炼厂中仍有较广泛的应用。

与按自由基反应机理进行的热裂化不同,催化裂化是按碳正离子机理进行的,催化剂促进了裂化、异构化和芳构化反应,裂化产物比热裂化具有更高的经济价值,气体中C3和C4较多,异构物多;汽油中异构烃多,二烯烃极少,芳烃较多。其主要反应包括:①分解,使重质烃转变为轻质烃;②异构化;③氢转移;④芳构化;⑤缩合反应、生焦反应。异构化和芳构化使低辛烷值的直链烃转变为高辛烷值的异构烃和芳烃。