1.燃料油生产工艺是什么?

2.LT增产汽油技术是什么技术?听说中国石化将在系统内推广用?

3.裂化重整 加氢裂化 催化裂化 裂化 裂解 的区别

4.胜利原油的典型加工流程是什么

5.催化裂化装置吸收稳定系统的原理是什么?

6.炼油工业的典型石油炼制过程及功能

催化裂化汽油生产过程_催化裂化汽油收率

蒸馏装置的常压塔5线抽出(裂原)、蒸馏装置的常压塔底抽出(常压渣油)、蒸馏装置的减压塔底抽出(减压渣油)、润滑油系统丙烷抽提装置的丙烷塔一段油、延时焦化装置的焦化蜡油等等。

催化裂化原料以长链复杂烃类为主,富含稠环烷烃、稠环芳烃、胶质和沥青质。原料的总体性质为挥发度差、密度大、粘度大、凝固点高、残炭高、分子结构大且复杂。

催化裂化装置故所以赚钱,因为它使重质油发生催化裂化反应,裂解干气、液态烃、汽油、柴油油浆、焦炭等等,也是将重组分转换为轻组分。

燃料油生产工艺是什么?

目前,在石油产品中,作为汽车燃料的汽油和柴油的数量要占到一多半,而一般原油中含有的汽油、柴油这样的轻质馏分只有1/4左右,光是从数量上看就有很大差距,同时在质量上也达不到要求。

因而,人们便想方设法要把约占原油3/4的较重成分变成轻质燃料,以满通事业发展的需要。根据原油在350℃起就开始分解这个特点,20世纪初就有人开发了石油热裂化生产汽油的方法,并大规模工业化,基本满足了当时的需要。但是到了20世纪40年代,汽车数量激增,汽油机的工作条件越来越苛刻,热裂化汽油无论在数量上还是质量上都已经不能满足需要,此时一种称为催化裂化的新生产工艺便应运而生。自那时起,催化裂化迅速发展,逐渐成为生产汽油的主角,而热裂化则逐渐退出历史舞台,现在已几乎绝迹。

所谓催化裂化就是指在催化剂存在下进行裂化反应,与单纯的热裂化相比,它可以在较低的温度下、较短的时间内完成反应,大大提高了生产的效率和汽油的质量。其反应温度大体在500℃左右,反应时间只有几秒钟。催化裂化的原料比较广泛,最初主要用沸点范围为350~500℃的中间馏分为原料,现在大量用重质原料(全部或部分掺入常压渣油或减压渣油),就是所谓重油催化裂化。催化裂化所用的催化剂现有许多品牌,但在本质上它们都是硅和铝的化合物,现在普遍用的是一类称为Y型分子筛的固体酸催化材料,以分子筛为主要成分的裂化催化剂具有很高的催化活性、选择性及稳定性。

催化裂化装置示意图事物往往是一分为二的,在催化裂化过程中原料也是两极分化的:一方面是大分子变小,产生出人们所需要的轻质产物;另一方面,大分子还缩合成更大的分子,直至生成焦炭。这些焦炭沉积在催化剂上,会使催化剂的活性大大下降以致使它无法工作。只有通入空气把焦炭烧掉,对催化剂进行再生,使其活性得到恢复后,才能重复使用。在炼油厂里,这个过程是在一种叫做流化床的设备中完成的,像粉末一样的微球形催化剂周而复始地在反应器和再生器之间来回穿梭运动。在反应器中,随着反应的进行催化剂的表面会结上焦炭,其活性也就逐渐下降;随后结了焦的催化剂就进入再生器,在空气气流中使催化剂上的焦炭燃烧掉,这样便可使催化剂的活性得以恢复。而焦炭燃烧所放出的热量会被催化剂吸收,为它回到反应器中继续进行裂化反应创造条件,这样也就一举两得了。

催化裂化装置催化裂化汽油的产率大体在50%左右,它在我国车用汽油中的份额约占80%之多。催化裂化汽油基本可达到90号车用汽油的标准,但是从环保上更高的要求来看,其中烯烃的含量较高,硫含量一般也偏高,这是目前正在设法解决的问题。此外,催化裂化还产出25%~30%的柴油馏分,其质量较差,需要经过进一步处理后才能应用。

催化裂化在生成汽油、柴油等液体产物的同时,还生成以丙烷、丙烯、丁烷、丁烯为主要成分的气体产物。它们在不太高的压力下就可以变成液体,这就是常用作民用燃料的液化气。其实,把液化气当燃料烧掉是很可惜的。因为它们是极好的石油化工原料,可以用来制取聚丙烯和聚丙烯腈等许多十分重要的产品。近年来,还开发了一系列用催化裂化方法尽量多产气体烯烃的过程,成为除了高温裂解外另一条提供石油化工原料的重要渠道。

此外,还有一类也能把大分子变小,使重质的原料变轻的过程称为加氢裂化。这种方法是在高达100多个大气压(约10兆帕)的氢气下,经过加氢裂化催化剂的作用,可以生产出质地纯净的优质喷气飞机燃料、柴油以及石油化工的原料(轻油)。

LT增产汽油技术是什么技术?听说中国石化将在系统内推广用?

原油经常减压蒸馏(一次加工)可得到约40%的轻质油品,其余是重质馏分和渣油。如果不经过二次加工,重质馏分和渣油只能作润滑油基础油原料和重质燃料油。目前国内原油中直馏轻质燃料油不能满足市场的需求,因此,如何将重质馏分甚至渣油经化学方法转化成轻质燃料是燃料生产的一个重要课题。此外,一次加工(直馏)汽油辛烷值低(一般在40~60),直接在汽车发动机中使用,会出现爆震现象,易损坏汽车发动机的零件,减少使用寿命,所以直馏汽油也需要二次加工,以提高其质量。

二次加工工艺很多,如催化裂化、催化重整、催化加氢、焦化、减黏裂化、烷基化等。本节只介绍目前炼油厂广泛用的催化裂化和催化重整工艺。

一、催化裂化

(一)催化裂化原理

所谓催化裂化,是指在裂解反应时用了催化剂的裂化工艺。催化裂化一般使用重质燃料油(如减压馏分油、焦化蜡油等)为原料。反应产物一般气体约10%~20%;汽油产率约30%~60%;柴油产率约20%~40%;焦炭产率约5%~7%。常压塔底重油和减压塔底渣油中含有较多的胶质、沥青质,在催化裂化时易生成焦炭,同时含有Fe、Ni等重金属,易使催化剂污染,降低其活性。若作裂化原料,必须解决重金属污染及焦炭生成较多的问题。

催化裂化时,原料油是在500℃左右及0.2~0.4MPa进行。在催化裂化条件下,烃类进行的反应不只是裂化一种反应,不但有大分子裂化成为小分子,而且也有小分子缩合成大分子的反应(甚至缩合成焦炭)。与此同时,还进行异构化、芳烃化、氢转移等反应。在这些反应中,裂化反应是最主要的反应。

(二)催化裂化的工业型式

催化裂化是原料油在催化剂的作用下进行的,一方面通过裂解等反应生成较小分子的产物——气体、汽油、柴油等;另一方面缩合成焦炭。这些焦炭沉积在催化剂表面使催化剂活性降低,因此必须烧去催化剂表面上积累的焦炭(积炭)来恢复催化剂的活性,这个用空气烧焦的过程称为催化剂的再生。一个催化裂化装置中,催化剂不断地进行反应和再生是催化裂化工艺的一个特点。

裂化反应是吸热反应,再生反应是放热反应。为了维持一定温度条件,必须解决周期性地进行反应和再生、供热和取热的问题,即在反应时向装置供热,再生时从装置内取走热量。解决反应和再生这一对矛盾的基本方式不同,工业催化裂化装置分为固定床、流化床、移动床和提升管四种型式,见图8-4。

图8-4 催化裂化的工业型式

1.固定床

固定床催化裂化装置是最早使用的催化裂化装置。预热后的原料进入反应器内反应,通常只经过几分钟到十几分钟,催化剂的活性就因表面积炭而下降。这时,停止进料,用水蒸气吹扫后,通入空气进行再生。因此,反应和再生是轮流间歇地在同一个反应器内进行。为了使生产连续化,可以将几个反应器组成一组,轮流地进行反应和再生。固定床催化裂化的设备结构复杂,消耗钢材多,生产连续性较差,因此,在工业生产中早已淘汰。

2.移动床

移动床与固定床不同,移动床的裂化反应和再生反应分别在反应器和再生器中进行。反应器靠催化剂循环供给热量,不设加热器;再生器内催化剂循环带走一部分热量,但再生反应器热量大,仍需要安装一些合金钢管,通过高压水来产生高压蒸汽,取走过剩热量。移动床由于设备结构复杂、钢材消耗多的问题,目前已淘汰。

3.流化床

流化床催化裂化与移动床类似,反应和再生分别在反应器和再生器进行,不同的是催化剂做成20~100μm的微球,使催化剂与油气或空气形成与沸腾的液体相似的流化状态。这种流化状态,使两器内温度分布均匀,催化剂循环量大,可携带的热量多,不必设置供热或取热设施,因此设备结构简单,操作方便;原料油气与催化剂充分接触,加速反应的进行,提高了设备的处理能力,适合于连续性生产。

4.提升管

20世纪60年代出现了一种分子筛催化剂,它的催化活性高,裂化反应在很短的时间内(几秒钟)反应完毕,必须迅速将反应物与催化剂分离,否则会引起二次反应,生成较多的气体和焦炭,降低轻质油收率,因此,流化床反应器不能充分发挥分子筛催化剂的长处,促使了流化床的改进,发展了提升管反应器。

提升管反应器是一根直立圆管(即提升管),原料油与催化剂从底部进入提升管反应器,以高速同时向上流动,经过几秒钟的反应后,由顶部离开反应器,然后反应产物与催化剂分离。提升管法大大减少了二次反应,提高了轻质油的收率。

(三)催化裂化工艺流程

图8-5是高低并列式提升管催化裂化装置的工艺流程。它由三部分组成:反应—再生系统、分馏系统和吸收—稳定系统。

1.反应—再生系统

新鲜原料油经换热后与回炼油进行混合,经加热炉加热到200~400℃后至提升管反应器下部的喷嘴。原料油用蒸汽雾化并喷入提升管内,与来自再生器的高温催化剂(约600~750℃)接触,油雾迅速汽化并进行反应,反应产物携带着催化剂上升,在反应器内呈流化状态。油气在反应器内停留时间很短(1~4s),减少了二次反应。反应产物油气夹带的催化剂经沉降器后,由于沉降器直径增大,使油气流速下降,其夹带的催化剂散落下来,油气再经旋风分离器分离出夹带的催化剂,离开反应器去分馏塔。

带有积炭的催化剂(待生催化剂)由沉降器落入汽提段。汽提段内装有几层人字形挡板,在其底部能通入过热水蒸气,将待生催化剂上的油气置换而返回上部,催化剂经汽提后由待生斜管进入再生器。

再生器的主要作用是用空气烧去催化剂上的积炭,即恢复其活性。空气由主风机供给。再生过程也是在流化状态进下行,再生后的催化剂(再生催化剂)经再生斜管送回反应器循环使用。

图8-5 催化裂化工艺流程图

再生产生的烟气经旋风分离器分离出夹带的催化剂后,进入烟气能量回收系统,充分利用烟气的热能和压力能做功。对于一些不完全再生的装置再生烟气中含有5%~10%的CO,有时设有CO锅炉,利用再生烟气来产生水蒸气以回收能量。

催化剂在反应和再生过程中会有损失或减少,需定期向反应器内补充或置换一定量的催化剂。为此,装置内至少应设2个催化剂储罐,供装卸催化剂使用。

2.分馏系统

由反应器来的反应油气进入分馏塔的底部,在分馏塔分馏为几个产品:塔顶为富气(裂解气)及粗汽油,侧线有轻柴油、重柴油和回炼油,塔底产品是油浆。轻柴油与重柴油分别经汽提后,再经换热冷却后出装置。回炼油进入回炼油罐后进入反应器中,再次裂化。塔底的油浆有催化剂粉末(>2g/L),为了减少催化剂损失和提高轻质油收率,将部分油浆送回反应器再次裂化,部分冷却后用于分馏塔下部进行循环,将进入分馏塔过热油气(460℃以上)冷却到饱和状态,以避免催化剂粉末堵塞塔盘和便于分馏。裂化富气及粗汽油送往吸收—稳定系统。

典型的催化裂化分馏塔有4个循环回流取走塔内剩余热量:1个顶循环回流,2个中段循环回流,1个油浆循环回流。后3个回流取热比例大(80%),引起塔的下部负荷大,上部负荷小。因此分馏塔一般缩径。

3.吸收—稳定系统

从分馏塔顶油气分离器分离出的富气中带有汽油组分,而粗汽油中则溶解有气态烃。吸收—稳定系统的作用就是利用吸收和精馏的方法将富气分离为干气(C2以下组分)和液化气(C3、C4)以及将粗汽油中混入的少量气体分出,生产蒸气压合格的稳定汽油。

二、催化重整

催化重整是以汽油馏分(直馏汽油、焦化汽油等)为原料,在催化剂(过去是用铂,20世纪60年代后出现铂铼双金属或其他金属催化剂)作用下,对原料油的分子结构加以重新“调整”的工艺过程。催化重整可以生产高辛烷值的重整汽油,作为优质发动机燃料;还可生产芳烃(苯、甲苯、二甲苯),作为重要的化工原料;同时副产纯度很高的氢气(75%~95%),是炼油厂获得廉价氢气的重要来源。因此,催化重整与催化裂化工艺同样重要。

(一)催化重整的基本原理

在催化重整过程中,原料发生的化学反应主要有以下五种:六元环烷烃的脱氢反应、五元环烷烃的异构脱氢反应、烷烃的环化脱氢反应、异构化反应、加氢裂化反应。重整反应中有大量H2存在,当大分子烃裂解为小分子烯烃时,烯烃加氢变为饱和烃,使产物安定性好。重整也会在催化剂表面生成焦炭,但与催化裂化相比较,重整催化剂促进加氢反应,抑制生焦。一般铂催化剂使用一年再烧焦再生,而铂铼或多金属催化剂可用2~3年再烧焦再生。

(二)催化重整工艺流程

生产的产品不同时,用的工艺流程也不尽相同。当以生产高辛烷值汽油为主要目的时,催化重整工艺流程主要包括原料预处理和重整反应两大部分。而当以生产轻芳烃为主要目的时,则工艺流程中还应设有芳烃分离部分。这部分包括反应产物后加氢以使其中的烯烃饱和、芳烃溶剂抽提、混合芳烃精馏分离等几个单元过程。下面介绍以生产高辛烷值汽油为目的铂铼重整工艺原理流程,见图8-6。

图8-6 催化重整工艺原理流程图

(a):1—预分馏塔;2—预加氢加热炉;3,4—预加氢反应器;5—脱水塔(b):1,2,3,4—加热炉;5,6,7,8—重整反应器;9—高压分离器;10—稳定塔

1.原料预处理部分

原料预处理包括原料的预分馏、预脱砷、预加氢。其目的是得到馏分范围和杂质含量都合乎要求的重整原料。

(1)预分馏:直馏汽油馏分(≤180℃馏分)进入预分馏塔,从塔顶切除原料中低于80℃的馏分(≤C6,因这部分烃类易裂化成非汽油馏分而降低汽油产率),作汽油调和组分或化工原料。塔底得到80~180℃馏分可作重整原料。

(2)预加氢:预加氢的目的是除去原料中的砷、铅、铜、铁、氧、硫、氮等催化剂“毒物”,使其含量降至允许范围内,同时可以使烯烃饱和,减少催化剂上积炭。预加氢反应放出H2S、NH3、H2O等,以及砷、铅等金属化合物,砷、铅等吸附在加氢催化剂(钼酸镍或钼酸钴)上除去。预加氢反应物经冷却后进入高压分离器,分离出富氢气体后,液体油中溶有少量的H2S、NH3、H2O等需除去,因此将液体油送到脱水塔、脱硫器,经处理后,可作为重整反应部分的进料。

有些炼油厂在预加氢单元设置单独的预脱砷反应器,用吸附法或化学氧化法脱砷。

2.重整反应及分馏部分

经预处理的原料油与循环氢混合,经加热炉加热后进入重整反应器。重整反应是吸热反应,反应时温度要下降。为了维持反应器较高的反应温度(480~520℃),工业上重整反应器用了3~4个反应器串联,每个反应器前都设有加热炉,加热至每个反应器所需的温度。

在催化重整反应时,反应器应通入大量氢气进行循环,目的是抑制生焦反应,保护催化剂;同时起到热载体作用,减少反应床层温降,提高反应器内的平均温度;此外,可稀释原料使原料分布更均匀。

由最后一个反应器出来的反应产物经换热、冷却后进入高压分离器,分出气体(含氢85%~95%),经循环氢压缩机升压后大部分作重整反应器的循环氢使用,少部分去预处理部分,分离出的重整生成油进入稳定塔。稳定塔是一个分馏塔,塔顶分出液态烃,塔底为蒸气压满足要求的稳定汽油。

从原油经减压、催化裂化等加工过程得到的轻质燃料中,仍含少量杂质(如含硫、氧、氮等化合物),这些杂质对油品的使用性能有很大影响,会使油品色泽加深、气味加浓,使油品具有腐蚀性,燃烧后放出气体,易于变质等,因此,必须将这些杂质除去。因而可通过燃料产品精制过程将半成品加工成商品,满足产品的规格要求。有时,单靠精制仍满足不了产品的某些性能要求,这时可向燃料中加入油品添加剂(如抗爆剂、抗氧化剂、降凝剂等)来改善燃料的质量。油品的调和无一定的规范,由各炼厂实际情况确定。比如,车用汽油的调和,主要组分用直馏汽油、二次加工所产的汽油,另外加入抗爆剂、抗氧化剂、金属钝化剂等。

裂化重整 加氢裂化 催化裂化 裂化 裂解 的区别

LT的全称是催化裂化柴油(LCO)选择性加氢饱和—选择性催化裂化组合生产高辛烷值汽油或轻质芳烃技术。LT新技术由石科院和石家庄炼化共同开发,经石炼多次工业试验,于10月16日通过技术鉴定。专家认为,该技术具有汽油选择性高、辛烷值高、氢耗低的特点,可实现LCO的完全转化,也可利用现有的加氢和催化裂化处理能力,将低价值的劣质催化裂化柴油转化为高价值的高辛烷值汽油或化工原料轻质芳烃,改造和运行费用较低,整体技术达到国际领先水平。该项技术将在中国石化将在系统内推广用。

胜利原油的典型加工流程是什么

大哥...没有裂化重整的...只有催化重整...

催化重整:在有催化剂作用的条件下,对汽油馏分中的烃类分子结构进行重新排列成新的分子结构的过程叫催化重整。 石油炼制过程之一,加热、氢压和催化剂存在的条件下,使原油蒸馏所得的轻汽油馏分(或石脑油)转变成富含芳烃的高辛烷值汽油(重整汽油),并副产液化石油气和氢气的过程。重整汽油可直接用作汽油的调合组分,也可经芳烃抽提制取苯、甲苯和二甲苯。副产的氢气是石油炼厂加氢装置(如加氢精制、加氢裂化)用氢的重要来源。

包括以下四种主要反应:①环烷烃脱氢;②烷烃脱氢环化;③异构化;④加氢裂化。反应①、②生成芳烃,同时产生氢气,反应是吸热的;反应③将烃分子结构重排,为一放热反应(热效应不大);反应④使大分子烷烃断裂成较轻的烷烃和低分子气体,会减少液体收率,并消耗氢,反应是放热的。除以上反应外,还有烯烃的饱和及生焦等反应,各类反应进行的程度取决于操作条件、原料性质以及所用催化剂的类型。

过程条件

原料为石脑油或低质量汽油,其中含有烷烃、环烷烃和芳烃。含较多环烷烃的原料是良好的重整原料。催化重整用于生产高辛烷值汽油时,进料为宽馏分,沸点范围一般为80~180℃;用于生产芳烃时,进料为窄馏分,沸点范围一般为60~165℃。重整原料中的烯烃、水及砷、铅、铜、硫、氮等杂质会使催化剂中毒而丧失活性,需要在进入重整反应器之前除去。对该过程的影响因素除了原料性质和催化剂类型以外,还有温度、压力、空速和氢油比。温度高、压力低、空速小和低氢油比对生成芳烃有利,但为了抑制生焦反应,需要使这些参数保持在一定的范围内。此外,为了取得最好的催化活性和催化剂选择性,有时在操作中还注入适当的氯化物以维持催化剂的氯含量稳定。

总结:催化重整是提高汽油质量和生产石油化工原料的重要手段

催化裂化:原料用原油蒸馏(或其他石油炼制过程)所得的重质馏分油;或重质馏分油中混入少量渣油,经溶剂脱沥青后的脱沥青渣油;或全部用常压渣油或减压渣油。在反应过程中由于不挥发的类碳物质沉积在催化剂上,缩合为焦炭,使催化剂活性下降,需要用空气烧去(见催化剂再生),以恢复催化活性,并提供裂化反应所需热量。催化裂化是石油炼厂从重质油生产汽油的主要过程之一。所产汽油辛烷值高(马达法80左右),安定性好,裂化气(一种炼厂气)含丙烯、丁烯、异构烃多。

化学反应:与按自由基反应机理进行的热裂化不同,催化裂化是按碳正离子机理进行的,催化剂促进了裂化、异构化和芳构化反应,裂化产物比热裂化具有更高的经济价值,气体中C3和C4较多,异构物多;汽油中异构烃多,二烯烃极少,芳烃较多。其主要反应包括:①分解,使重质烃转变为轻质烃;②异构化;③氢转移;④芳构化;⑤缩合反应、生焦反应。异构化和芳构化使低辛烷值的直链烃转变为高辛烷值的异构烃和芳烃。

催化裂化主要化学反应

1、裂化反应。裂化反应是C-C键断裂反应,反应速度较快。

2、异构化反应。它是在分子量大小不变的情况下,烃类分子发生结构和空间位置的变化。

3、氢转移反应。即某一烃分子上的氢脱下来,立即加到另一烯烃分子上,使这一烯烃得到饱和的反应。

4、芳构化反应。芳构化反应是烷烃、烯烃环化后进一步氢转移反应,反应过程不断放出氢原子,最后生成芳烃

裂解:裂解是指只通过热能将一种样品(主要指高分子化合物)转变成另外几种物质(主要指低分子化合物)的化学过程。裂解也可称谓热裂解或热解。 石油化工生产过程中,以比裂化更高的温度(700℃~800℃,有时甚至高达1000℃以上),使石油分镏产物(包括石油气)中的长链烃断裂成乙烯、丙烯等短链烃的加工过程。

目前主要用石脑油、煤油、柴油为原料并向重油发展。在裂解过程中,同时伴随缩合、环化和脱氢等反应。由于所发生的反应很复杂,通常把反应分成两个阶段来看。第一阶段,原料变成的目的产物为乙烯、丙烯,这种反应称为一次反应。在第二阶段,一次反应生成的乙烯、丙烯继续反应转化为炔烃、二烯烃、芳烃、环烷烃,甚至最终转化为氢气和焦炭,这种反应称为二次反应。所以裂解产物往往是多种组分的混合物。影响裂解的基本因素首先是温度和反应的持续时间,还有是烃原料的种类。化工生产中用热裂解的方法,在裂解炉(管式炉或蓄热炉)中,把石油烃变成小分子的烯烃、炔烃和芳香烃,如乙烯、丙烯、丁二烯、乙炔、苯和甲苯等。

裂解,或称热解、热裂、热裂解、高温裂解,指无氧气存在下,有机物质的高温分解反应。此类反应常用于分析复杂化合物的结构,如利用裂解气相色谱-质谱法。

裂解又可分为以下几种主要类型:

无水裂解:在古代时无水裂解用于将木材转化为木炭,现在可用该法从生物质能或塑料制取液体燃料。

含水热解:如油的蒸汽裂化及由有机废料的热解聚制取轻质原油。 真空裂解

此外,由于着火时氧气供应通常较少,因而火灾时发生的反应与裂解反应类似。这也是目前研究裂解反应机理和性质的重要原因。

裂化:

一种使烃类分子分裂为几个较小分子的反应过程。烃类分子可能在碳-碳键、碳-氢键、无机原子与碳或氢原子之间的键处分裂。在工业裂化过程中,主要发生的是前两类分裂。在中国,习惯上把从重质油生产汽油和柴油的过程称为裂化;而把从轻质油生产小分子烯烃和芳香烃的过程称为裂解(见热解)。 单纯的裂化反应是吸热反应,如果在裂化反应同时又发生大量的催化加氢反应(如加氢裂化),则为放热反应。单纯的裂化是不可逆反应。裂化反应的初次产品还会发生二次裂化反应,另外少量原料也会在裂化的同时发生缩合反应。因此,裂化反应属于平行顺序反应类型。

工业上,烃类裂化过程是在加热,或同时有催化剂存在,或在临氢的条件下进行,这就是石油炼制过程中常用的热裂化、催化裂化和加氢裂化。热裂化反应按自由基链反应机理进行,催化裂化反应按碳正离子链反应机理进行。此两类反应的产品其性质和产率各不相同

C16H34→C8H18+C8H16 C8H18→C4H10+C4H8 C4H10→CH4+C3H6 反应需加热

催化裂化装置吸收稳定系统的原理是什么?

炼油的生产工艺有很多种,主要有以下几类:

常压蒸馏

利用加热炉,分馏塔等设备将原油气化,烃(碳氢化合物的总称)类化合物在不同的温度下蒸发,然后将这些物质冷却为液体,生产出一系列的石油制品。其工艺流程为:原油换热→初馏→常压蒸馏。 [1]

减压蒸馏

利用降低压力从而降低沸点的原理,将常压重油在减压塔内分馏,从重油中分出柴油、润滑油、石蜡、沥青等产品。 [1]

催化裂化

催化裂化是在热裂化工艺上发展起来的,是提高原油加工深度,生产优质汽油、柴油最重要的工艺操作。原料主要是原油蒸馏或其他炼油装置的350~540℃馏分的重质油。

催化裂化工艺由三部分组成:原料油催化裂化、催化剂再生、产物分离。

催化裂化所得的产物经分馏后可得到气体、汽油、柴油和重质馏分油。部分重质油返回反应器继续加工称为回炼油。催化裂化操作条件的改变或原料波动,可使产品组成出现变化。 [1]

催化重整

催化重整

催化重整

催化重整(简称重整)是在催化剂和氢气存在下,将常压蒸馏所得的轻汽油转化成含芳烃较高的重整汽油的过程。如果以80~180℃馏分为原料,产品为高辛烷值汽油;如果以60~165℃馏分为原料油,产品主要是苯、甲苯、二甲苯等芳烃, 重整过程副产氢气,可作为炼油厂加氢操作的氢源。重整的反应条件是:反应温度为490~525℃,反应压力为1~2兆帕。重整的工艺过程可分为原料预处理和重整两部分。 [1]

加氢裂化

加氢裂化过程是在高压、氢气存在下进行,需要催化剂,把重质原料转化成汽油、煤油、柴油和润滑油。加氢裂化由于有氢存在,原料转化的焦炭少,可除去有害的含硫、氮、氧的化合物,操作灵活,可按产品需求调整。产品收率较高,而且质量好。 [1]

延迟焦化

裂化

裂化

它是在较长反应时间下,使原料深度裂化,以生产固体石油焦炭为主要目的,同时获得气体和液体产物。延迟焦化用的原料主要是高沸点的渣油。延迟焦化的主要操作条件是:原料加热后温度约500℃, 焦炭塔在稍许正压下操作。改变原料和操作条件可以调整汽油、柴油、裂化原料油、焦炭的比例。 [1]

炼厂气加工

炼厂气

炼厂气

原油一次加工和二次加工的各生产装置都有气体产出,总称为炼厂气,就组成而言,主要有氢、甲烷、由2个碳原子组成的乙烷和乙烯、由3个碳原子组成的丙烷和丙烯、由4个碳原子组成的丁烷和丁烯等。它们的主要用途是作为生产汽油的原料和石油化工原料以及生产氢气和氨。发展炼油厂气加工的前提是要对炼厂气先分离后利用。炼厂气经分离作化工原料的比重增加,如分出较纯的乙烯可作乙苯; 分出较纯的丙烯可作聚丙烯等。 [1]

烷基化

烷基化过程的目的是由炼油气生产工业异辛烷,作为车用汽油(或航空汽油)的高辛烷值组成,以满足优质、无铅汽油的需要。 [1]

炼油工业的典型石油炼制过程及功能

催化裂化生产过程的主要产品是气体、汽油和柴油,其中气体产品包括干气和液化石油气,干气作为本装置燃料气烧掉,液化石油气是宝贵的石油化工原料和民用燃料。

所谓吸收稳定,目的在于将来自分馏部分的催化富气中C2以下组分与C3以上组分分离以便分别利用,同时将混入汽油中的少量气体烃分出,以降低汽油的蒸气压,保证符合商品规格。

吸收-稳定系统包括吸收塔、解吸塔、再吸收塔、稳定塔以及相应的冷换设备。

由分馏系统油气分离器出来的富气经气体压缩机升压后,冷却并分出凝缩油,压缩富气进入吸收塔底部,粗汽油和稳定汽油作为吸收剂由塔顶进入,吸收了C3、C4(及部分C2)的富吸收油由塔底抽出送至解吸塔顶部。

吸收塔设有一个中段回流以维持塔内较低的温度,吸收塔顶出来的贫气中尚夹带少量汽油,经再吸收塔用轻柴油回收其中的汽油组分后成为干气送燃料气管网。吸收了汽油的轻柴油由再吸收塔底抽出返回分馏塔。

解吸塔的作用是通过加热将富吸收油中C2组分解吸出来,由塔顶引出进入中间平衡罐,塔底为脱乙烷汽油被送至稳定塔。稳定塔的目的是将汽油中C4以下的轻烃脱除,在塔顶得到液化石油气〈简称液化气〉,塔底得到合格的汽油——稳定汽油。

吸收解吸系统有两种流程,上面介绍的是吸收塔和解吸塔分开的所谓双塔流程;还有一种单塔流程,即一个塔同时完成吸收和解吸的任务。双塔流程优于单塔流程,它能同时满足高吸收率和高解吸率的要求。

催化裂化工艺过程,一般由三个部分组成,即反应一再生系统、分馏系统、吸收—稳定系统。对处理量较大、反应压力较高(例如>0.2MPa)的装置,常常还有再生烟气的能量回收系统。

工艺过程

图1是一个高低并列式提升管催化裂化装置的工艺流程。下面将其三个组成部分:反应—再生系统、分馏系统及吸收—稳定系统进行简要介绍

再生系统:

新鲜原料油经换热后与回炼油浆混合,经加热炉加热至180-320℃后至催化裂化提升管反应器下部的喷嘴,原料油由蒸气雾化并喷入提升管内,在其中与来自再生器的高温催化剂(600-750℃)接触,随即汽化并进行反应。油气在提升管内的停留时间很短,一般只有几秒钟。反应产物经旋风分离器分离出夹带的催化剂后离开沉降器去分馏塔。

积有焦炭的催化剂(称待生催化剂)由沉降器落入下面的汽提段。汽提段内装有多层人字形挡板并在底部通入过热水蒸气,待生催化剂上吸附的油气和颗粒之间的空间内的油气被水蒸气置换出而返回上部。经汽提后的待生催化剂通过待生斜管进人再生器。

再生器的主要作用是烧去催化剂上因反应而生成的积炭,使催化剂的活性得以恢复。再生用空气由主风机供给,空气通过再生器下面的燃烧室及分布管进人流化床层。对于热平衡式装置,燃烧室只是在开工升温时才使用,正常运转时并不烧燃料油。再生后的催化剂(称再生催化剂)落人淹流管,经再生斜管送回反应器循环使用。再生烟气经旋风分离器分离出夹带的催化剂后,经双动滑阀排人大气。

在加工生焦率高的原料时,例如加工含渣油的原料时,因焦炭产率高,再生器的热量过剩,必须在再生器中设取热设施以取走过剩的热量。

再生烟气的温度很高,不少催化裂化装置设有烟气能量回收系统,利用烟气的热能和压力能(当设能量回收系统时,再生器的操作压力应较高些)做功,驱动主风机以节约电能,甚至可对外输出剩余电力。对一些不完全再生的装置,再生烟气中含有5%-10%(体积分数)的CO,可以设CO锅炉使CO完全燃烧以回收能量。

在生产过程中,催化剂会有损失及失活,为了维持系统内的催化剂的藏量和活性,需要定期地或经常地向系统补充或置换新鲜催化剂。为此,装置内至少应设两个催化剂储罐。装卸催化剂时用稀相输送的方法,输送介质为压缩空气。

在流化催化裂化装置的自动控制系统中,除了有与其他炼油装置相类似的温度、压力、流量等自动控制系统外,还有一整套维持催化剂正常循环的自动控制系统和当发生流化失常时的自动保护系统。

此系统一般包括多个自保系统,例如反应器进料低流量自保系统、主风机出口低流量自保系统、两器差压自保系统,等等。以反应器进料低流量自保系统为例,当进料量低于某个下限值时,在提升管内就不能形成足够低的密度,正常的两器压力平衡被破坏,催化剂不能按规定的路线进行循环,而且还会发生催化剂倒流并使油气大量带人再生器而引起事故。此时,进料低流量自保系统就自动进行以下动作:切断反应器进料并使进料返回原料油罐(或中间罐),向提升管通入事故蒸气以维持催化剂的流化和循环。

分馏系统

典型的催化裂化分馏系统见图1。由反应器来的反应产物(油气)从底部进入分馏塔,经底部的脱过热段后在分馏段分割成几个中间产品:塔顶为富气及汽油,侧线有轻柴油、重柴油和回炼油。塔底产品是油浆。轻柴油和重柴油分别经汽提后,再经换热、冷却后出装置。

催化裂化装置的分馏塔有几个特点:

①进料是带有催化剂粉尘的过热油气,因此,分馏塔底部设有脱过热段,用经过冷却的油浆把油气冷却到饱和状态并洗下夹带的粉尘以便进行分馏和避免堵塞塔盘。

②全塔的剩余热量大而且产品的分离精确度要求比较容易满足。因此一般设有多个循环回流:塔顶循环回流、1-2个中段循环回流和油浆循环。

③塔顶同流用循环回流而不用冷回流,其主要原因是进入分馏塔的油气含有相当大数量的惰性气体和不凝气,它们会影响塔顶冷凝冷却器的效果;用循环回流代替冷回流可以降低从分馏塔顶至气压机入口的压降,从而提高气压机的入口压力、降低气压机的功率消耗。

稳定系统

吸收—稳定系统主要由吸收塔、再吸收塔、解吸塔及稳定塔组成。从分馏塔顶油气分离器出来的富气中带有汽油组分,而粗汽油中则溶解有C3、C4组分。吸收稳定系统的作用就是利用吸收和精馏的方法将富气和粗汽油分离成干气(≤C2)液化气(C3、C4)和蒸气压合格的稳定汽油。

其中的液化气再利用精馏的方法通过气体分馏装置将其中的丙烯、丁烯分离出来,进行化工利用。催化裂化装置的分馏系统及吸收—定系统在各催化裂化装界中一般并无很大差别。

现代化的大型炼厂建有以下不同类型炼制装置;

工艺过程 目的和功能

------------------------------------------------------

(1)常压蒸馏 常压下降石油分为轻质烃、汽油、煤油、柴油、常压重油等

(2)加压蒸馏 在减压下将常压重油分成减压馏分和减压渣油

(3) 石脑油等 对石脑油(煤油、柴油等)加氢脱硫、加氢处理脱氮等

(4)催化重整 将加氢后的石脑油转化为高辛烷值汽油

(5)催化裂化 将减压馏分油转化成气体、汽油、粗柴油等

(6)气分装置 将炼制过程产生的气态烃脱硫,分流程不用组分

(7)减粘装置 减压渣油轻度热裂化生成气体、汽油、粗柴油和粘度较小的重燃料油

(8)加氢裂化 将减压馏分油和重油转化成气体、汽油、煤油和粗柴油等

(9)焦化 将减压渣油经热加工成气体、汽油、粗柴油和焦炭

(10)溶剂脱沥青 减压渣油经溶剂抽提分离成脱沥青油和沥青

(11)烷基化 轻质烃生产烷基化汽油

(12)叠合 轻质烃叠合生产叠合汽油

(13)异构化 烷烃异构化生产汽油馏分

(14)芳烃装置 直馏汽油经重整生产芳烃

(15)润滑油装置 减压馏分油经溶剂抽提、脱蜡、加氢精制生产润滑油组分

(16)沥青氧化 减压渣油经空气氧化生产沥青

(17)硫磺回收 将吸收的硫化氢转化为硫磺

(18)制氢装置 将石油馏分转化成氢气

--------------------------------------------------